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Solutions

Problem 1. Let f : [0, 1] → (0,∞) be an integrable function such that f(x) · f(1 − x) = 1 for
all x ∈ [0, 1]. Prove that ∫ 1

0

f(x) dx ≥ 1.

(proposed by Mike Daas, Universiteit Leiden)

Hint: Apply the AM–GM inequality.

Solution 1. By the AM–GM inequlity we have

f(x) + f(1− x) ≥ 2
√

f(x)f(1− x) = 2.

By integrating in the interval [0, 1
2
] we get

∫ 1

0

f(x)dx =

∫ 1
2

0

f(x)dx+

∫ 1
2

0

f(1− x)dx =

∫ 1
2

0

(
f(x) + f(1− x)

)
dx ≥

∫ 1
2

0

2dx = 1.

Solution 2. From the condition, we have∫ 1

0

f(x)dx =

∫ 1

0

f(1− x)dx =

∫ 1

0

1

f(x)
dx

and hence, using the positivity of f , the claim follows since(∫ 1

0

f(x)dx

)2

=

∫ 1

0

f(x)dx ·
∫ 1

0

1

f(x)
dx ≥

(∫ 1

0

1dx

)2

≥ 1

by the Cauchy-Schwarz inequality.
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Problem 2. Let n be a positive integer. Find all n × n real matrices A with only real eigenvalues
satisfying

A+ Ak = AT

for some integer k ≥ n.

(AT denotes the transpose of A.)

(proposed by Camille Mau, Nanyang Technological University)

Hint: Consider the eigenvalues of A.

Solution 1. Taking the transpose of the matrix equation and substituting we have

AT + (AT )k = A =⇒ A+ Ak + (A+ Ak)k = A =⇒ Ak(I + (I + Ak−1)k) = 0.

Hence p(x) = xk(1 + (1 + xk−1)k) is an annihilating polynomial for A. It follows that all eigenvalues
of A must occur as roots of p (possibly with different multiplicities). Note that for all x ∈ R (this
can be seen by considering even/odd cases on k),

(1 + xk−1)k ≥ 0,

and we conclude that the only eigenvalue of A is 0 with multiplicity n.
Thus A is nilpotent, and since A is n × n, An = 0. It follows Ak = 0, and A = AT . Hence A

can only be the zero matrix: A is real symmetric and so is orthogonally diagonalizable, and all its
eigenvalues are 0.

Remark. It’s fairly easy to prove that eigenvalues must occur as roots of any annihilating polynomial. If λ
is an eigenvalue and v an associated eigenvector, then f(A)v = f(λ)v. If f annihilates A, then f(λ)v = 0,
and since v ̸= 0, f(λ) = 0.

Solution 2. If λ is an eigenvalue of A, then λ + λk is an eigenvalue of AT = A + Ak, thus of A
too. Now, if k is odd, then taking λ with maximal absolute value we get a contradiction unless all
eigenvalues are 0. If k is even, the same contradiction is obtained by comparing the traces of AT and
A+ Ak.

Hence all eigenvalues are zero and A is nilpotent. The hypothesis that k ≥ n ensures A = AT . A
nilpotent self-adjoint operator is diagonalizable and is necessarily zero.
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Problem 3. Let p be a prime number. A flea is staying at point 0 of the real line. At each minute,
the flea has three possibilities: to stay at its position, or to move by 1 to the left or to the right.
After p− 1 minutes, it wants to be at 0 again. Denote by f(p) the number of its strategies to do this
(for example, f(3) = 3: it may either stay at 0 for the entire time, or go to the left and then to the
right, or go to the right and then to the left). Find f(p) modulo p.

(proposed by Fedor Petrov, St. Petersburg)

Hint: Find a recurrence for f(p) or use generating functions.

Solution 1. The answer is f(p) ≡ 0 mod 3 for p = 3, f(p) ≡ 1 mod 3 for p = 3k + 1, and
f(p) ≡ −1 mod 3 for p = 3k − 1.

The case p = 3 is already considered, let further p ̸= 3. For a residue i modulo p denote by
ai(k) the number of Flea strategies for which she is at position i modulo p after k minutes. Then
f(p) = a0(p−1). The natural recurrence is ai(k+1) = ai−1(k)+ai(k)+ai+1(k), where the indices are
taken modulo p. The idea is that modulo p we have a0(p) ≡ 3 and ai(p) ≡ 0. Indeed, for all strategies
for p minutes for which not all p actions are the same, we may cyclically shift the actions, and so
we partition such strategies onto groups by p strategies which result with the same i. Remaining
three strategies correspond to i = 0. Thus, if we denote xi = ai(p− 1), we get a system of equations
x−1+x0+x1 = 3, xi−1+xi+xi+1 = 0 for all i = 1, . . . , p−1. It is not hard to solve this system (using
the 3-periodicity, for example). For p = 3k + 1 we get (x0, x1, . . . , xp−1) = (1, 1,−2, 1, 1,−2, . . . , 1),
and (x0, x1, . . . , xp−1) = (−1, 2,−1,−1, 2, . . . , 2) for p = 3k + 2.

Solution 2. Note that f(p) is the constant term of the Laurent polynomial (x + 1 + 1/x)p−1 (the
moves to right, to left and staying are in natural correspondence with x, 1/x and 1.) Thus, working
with power series over Fp we get (using the notation [xk]P (x) for the coefficient of xk in P )

f(p) = [xp−1](1+x+x2)p−1 = [xp−1](1−x3)p−1(1−x)1−p = [xp−1](1−x3)p(1−x)−p(1−x3)−1(1−x)

= [xp−1](1− x3p)(1− xp)−1(1− x3)−1(1− x) = [xp−1](1− x3)−1(1− x),

and expanding (1− x3)−1 =
∑

x3k we get the answer.
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Problem 4. Let n > 3 be an integer. Let Ω be the set of all triples of distinct elements of
{1, 2, . . . , n}. Let m denote the minimal number of colours which suffice to colour Ω so that whenever
1 ≤ a < b < c < d ≤ n, the triples {a, b, c} and {b, c, d} have different colours. Prove that

1

100
log log n ⩽ m ⩽ 100 log log n.

(proposed by Danila Cherkashin, St. Petersburg)

Hint: Define two graphs, one on Ω and another graph on pairs (2-element sets).

Solution. For k = 1, 2, . . . , n denote by Ωk the set of all
(
n
k

)
k-subsets of [n]. For each k =

1, 2, . . . , n− 1 define a directed graph Gk whose vertices are elements of Ωk, and edges correspond to
elements of Ωk+1 as follows: if 1 ⩽ a1 < a2 < . . . < ak+1 ⩽ n, then the edge of Gk corresponding to
(a1, . . . , ak+1) goes from (a1, . . . , ak) to (a2, . . . , ak+1).

For a directed graph G = (V,E) we call a subset E1 ⊂ E admissible, if E1 does not contain a
directed path a−b−c of length 2. Define b-index b(G) of the G as the minimal number of admissible
sets which cover E. As usual, a subset V1 ⊂ V is called independent, if there are no edges with both
endpoints in V1; a chromatic number of G is defined as the minimal number of independent sets
which cover V .

A straightforward but crucial observation is the following

Lemma. For all k = 2, 3, . . . , n a subset Ak ⊂ Ωk is independent in Gk if and only if it is admissible
as a set of edges of Gk−1.

Corollary. χ(Gk) = b(Gk−1) for all k = 2, 3, . . . , n.
Now the bounds for numbers χ(Gk) follow by induction using the following general

Lemma. For a directed graph G = (V,E) we have

log2 χ(G) ⩽ b(G) ⩽ 2⌈log2 χ(G)⌉.

Proof. 1) Denote b(G) = m and prove that log2 χ(G) ⩽ m. For this we take a covering of E by m
admissible subsets E1, . . . , Em and define a color c(v) of a vertex v ∈ V as the following subset of
[m]: c(v) := {i ∈ [m] : ∃vw ∈ Ei}. Note that for any edge vw ∈ E there exists i such that vw ∈ Ei

which yields i ∈ c(v) and i /∈ c(w), therefore c(v) ̸= c(w). So, each color class is an independent set
and we get χ(G) ⩽ 2m as needed.

2) Denote χ(G) = k and prove that b(G) ⩽ 2⌈log2 k⌉. Take a proper coloring τ : V → {0, 1, . . . , k−
1} (that means that τ(u) ̸= τ(v) for all edges vu ∈ E). For an integer x ∈ {0, 1, . . . , k − 1} take a
binary representation x =

∑r−1
i=0 εi(x)2

i, εi(x) ∈ {0, 1}, where r = ⌈log2 k⌉. Consider the following
2r subsets of E, two subsets Ei,+ and Ei,− for each i ∈ {0, 1, . . . , k − 1}:

Ei,+ = {vu ∈ E : εi(τ(v)) = 0, εi(τ(u)) = 1},
Ei,− = {vu ∈ E : εi(τ(v)) = 1, εi(τ(u)) = 0}.

Each of them is admissible, and they cover E, thus b(G) ⩽ 2r.

Note that χ(G1) = n, thus b(G1) ⩾ log2 n. Actually we have b(G1) = ⌈log2 n⌉: indeed, if we
define τ(v) = v − 1 for all v ∈ [n] = Ω1, then the above sets Ei,+ cover all edges of G1.

The Lemma above now yields for our number m = χ(G3) = b(G2) the following bounds, which
are better than required:

b(G2) ⩾ log2 χ(G2) = log2 b(G1) = log2⌈log2 n⌉
b(G2) ⩽ 2⌈log2 χ(G2)⌉ = 2⌈log2 b(G1)⌉ = 2⌈log2⌈log2 n⌉⌉.

Remark. Actually the upper bound in the Lemma may be improved to (1 + o(1)) log2 χ(G) that yields
m = (1 + o(1)) log2 log2 n.
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