IMC 2022

First Day, August 3, 2022

Problem 1. Let $f : [0,1] \to (0,\infty)$ be an integrable function such that $f(x) \cdot f(1-x) = 1$ for all $x \in [0,1]$. Prove that

$$\int_0^1 f(x) \, \mathrm{d}x \ge 1.$$

(10 points)

(10 points)

Problem 2. Let *n* be a positive integer. Find all $n \times n$ real matrices *A* with only real eigenvalues satisfying

$$A + A^k = A^T$$

for some integer $k \geq n$.

 $(A^T$ denotes the transpose of A.)

Problem 3. Let p be a prime number. A flea is staying at point 0 of the real line. At each minute, the flea has three possibilities: to stay at its position, or to move by 1 to the left or to the right. After p-1 minutes, it wants to be at 0 again. Denote by f(p) the number of its strategies to do this (for example, f(3) = 3: it may either stay at 0 for the entire time, or go to the left and then to the right, or go to the right and then to the left). Find f(p) modulo p.

(10 points)

Problem 4. Let n > 3 be an integer. Let Ω be the set of all triples of distinct elements of $\{1, 2, \ldots, n\}$. Let m denote the minimal number of colours which suffice to colour Ω so that whenever $1 \le a < b < c < d \le n$, the triples $\{a, b, c\}$ and $\{b, c, d\}$ have different colours. Prove that

$$\frac{1}{100}\log\log n \leqslant m \leqslant 100\log\log n.$$

(10 points)