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Solutions

Problem 1. Let A be a real n x n matrix such that A3 =0.
(a) Prove that there is a unique real n x n matrix X that satisfies the equation

X+AX +XA?= A

(b) Express X in terms of A.
(proposed by Bekhzod Kurbonboev, Institute of Mathematics, Tashkent)

Hint: (a) Multiply the equation by some power of A from left and another power of A from right.
(b) Substitute repeatedly X = A - AX — X A2,

Solution 1. First suppose that some matrix X satisfies the equation. We can obtain new equations
if we multiply the given equation by some power of A from left and another power of A from right.
For example,

A (X +AX + XA A2 = A2X A2+ A3 X A%+ A2X A A% = A2X A2,
The right-hand side is A?- A- A2 = A3- A2=0, so

AZX A% = A2(X + AX + XA%)A2 = A5 = 0. Similarly,
AX = A2(X +AX + XA%) = A3 =0
AXA=AX +AX + XA?)A=A3=0
XA = (X +AX + XA)A? = A3 =0
AX = A(X + AX + X A%)A = A% Finally
X=A-AX-XA%=A- A%
Hence, no matrix other than A — A? can satisfy the equation.

Note that the argument above does not prove that the matrix X = A — A? satisfies the equation,
because the steps cannot be done in reverse order. That must be verified separately. Indeed,

X+AX + XA? = (A-A%)+ A(A- A%) + (A - A%)A? =A-A*= A
Hence, X = A — A2 is the unique solution of the equation.
Remark. By multiplying the equation by A™ from left and by A* from right we can get 9 different equations:

X+AX +XA%2=A XA+AXA=A%2 XA?2+AXA%2=0
AX + A2X + AXA?2=A%2 AXA+A2XA=0 AXA%2+A%2XA%2=0
A2X + A2X A2=0 A2XA=0 A2XA%2=0

These formulas provide a system of linear equations for the nine matrices X, AX, A2X, XA, AXA, A2XA,
X A% AX A% and A2X A2



Solution 2. We use a different approach to express X in terms of A. If some matrix X satisfies

the equation then
X=A-AX - XA%

Let us substitute this identity in the right-hand side repeatedly until X cancels out everywhere.
Notice that by the condition A3 =0 we have A3 = A= A5=A3X = X A4 = AXA4=A3XA%2=0, so

X=A-AX - XA?
S A-A(A-AX - XA?) = (A - AX - X A?) A2
S A (A2- A2X - AXA?) - (AP — AX A’ - X AY)
=A- A%+ A2X + 2AX A?
S A A% 4 A2(A- AX - XA?) +2A(A - AX - X A?)A?
S A A2 4 (AP - APX - A2XA2) 4 2(A* - APX A% - AX AY)
=A-A?-3A%2X A?
S A- A2 C3A%(A- AX - X A?)A?
S A A% 3(A° - APX AT - A2X AY)
=A- A%

To complete the solution, we have to verify that X = A - A? is indeed a solution. This step is the
same as in Solution 1.

Solution 3. Let B=1- A+ A? so that B is the inverse of I + A. Multiplying by B from the left,
the equation is equivalent to
X + BXA? = BA. (1)

Now assume X satisfies the equation. Multiplying by A? from the right and using A% = 0 we get
X A? =0. Hence the equation simplifies to X = BA=A - A2
On the other hand, X = BA obviously satisfies (|1)).

Problem 2. Let n and k be fixed positive integers, and let a be an arbitrary non-negative integer.

Choose a random k-element subset X of {1,2,...,k + a} uniformly (i.e., all k-element subsets are
chosen with the same probability) and, independently of X, choose a random n-element subset Y of
{1,...,k+n+a} uniformly.

Prove that the probability
P( min(Y) > maX(X))

does not depend on a.

(proposed by Fedor Petrov, St. Petersburg State University)
Hint: The sets X and Y with min(Y") > max(X) are uniquely determined by X uY.

Solution 1. The number of choices for (X,Y) is (kza) . ("+k+“).

n

The number of such choices with min(Y") > max(X) is equal to (”;fza) since this is the number of

choices for the n+ k-element set X UY and this union together with the condition min(Y") > max(X)
determines X and Y uniquely (note in particular that no elements of X will be larger than k + a).
Hence the probability is
n+k+a
( n+k ) _ 1
k+a n+k+a\ ~ [(n+k
(%) - () (%)
where the identity can be seen by expanding the binomial coefficients on both sides into factorials
and canceling.




Since the right hand side is independent of a, the claim follows.

Solution 2. Let f be the increasing bijection from {1,2,..., k+a} to {1,...,k+a+n} Y. Note
that min(Y") > max(X) if and only if min(Y") > max(f(X)).
Note that
{Z,=Y,Z, = f(X),Zs:=f({1,2,... . k+a} ~ X)}

is a random partition of
{1,....n+k+a} =2, 02 uZ,

into an n-subset, k-subset, and a-subset.
If an a-subset Z, is fixed, the conditional probability that min(Z;) > max(Z,) always equals
1/("*). Therefore the total probability also equals 1/("*).

Problem 3. We say that a positive real number d is good if there exists an infinite sequence
ai,as,az, ... € (0,d) such that for each n, the points ai,...,a, partition the interval [0,d] into
segments of length at most 1/n each. Find

sup {d | d is good}.

(proposed by Josef Tkadlec)

Hint: To get an upper bound, use that some of the gaps after n steps are still intact some steps
later.

Solution. Let d* = sup{d | d is good}. We will show that d* =1n(2) = 0.693.

1. d*<In2:
Assume that some d is good and let aq,as, ... be the witness sequence.
Fix an integer n. By assumption, the prefix ay,...,a, of the sequence splits the interval [0, d]

into n + 1 parts, each of length at most 1/n.

Let 0< ¥y <fly <--- < /.1 be the lengths of these parts. Now for each k =1,...,n after placing
the next k terms a,,1,..., 0,4, at least n+ 1 -k of these initial parts remain intact. Hence

lpiiop < ﬁ Hence
d=0;+-+/lh £l+ L +~~-+i.
n n+l 2n
As n — oo, the RHS tends to In(2) showing that d < In(2).

Hence d* <In2 as desired.

(2)

2. d*>In2:
Observe that

In2=In2n-Inn=> In(n+i)-In(n+i-1) = Zln(1+
i=1

i=1

n+i—1)'

Interpreting the summands as lengths, we think of the sum as the lengths of a partition of the
segment [0,In2] in n parts. Moreover, the maximal length of the parts is In(1 + 1/n) < 1/n.

Changing n to n+1 in the sum keeps the values of the sum, removes the summand In(1+1/n),

and adds two summands
1n(1+i)+ln(1+ ! ):ln(1+l).
2n 2n +1 n

3




This transformation may be realized by adding one partition point in the segment of length
In(1+1/n).

In total, we obtain a scheme to add partition points one by one, all the time keeping the
assumption that once we have n -1 partition points and n partition segments, all the partition
segments are smaller than 1/n.

The first terms of the constructed sequence will be a; =In3,as=In2,a3=In%,a,=In2,....

Remark. This remark describes in fact the same solution from a different view and some ideas behind it.
It could be erased after marking is finished. Estimate is quite natural. To prove that RHS tends to In2
we use some integral estimates by

2n+1 1
/ —dr=In(2n+1) -Inn.
n T

2n 1
[ —dx =1n2
n X

is independent of n. This can help us with the construction since the above equality means

n+l 1 2n+1 1 2n+2 1
Ilzf —dm:/ —d;c+f Sdo=TIr+ I,
n X 2n X 2n+l X

so, interval of length I can be splitted into two intervals of lengths I» and I3. In fact, after placing the point
an in the construction for d = In 2, the lengths of the n + 1 intervals are

n+2 1 n+3 1 2n+2 ]
[L+l x’[n+2 $7"',f2n+1 T

Here we can observe that

with total length

n+1 x

Problem 4. Let f: R - R be a function. Suppose that for every € > 0, there exists a function
g:R - (0,00) such that for every pair (z,y) of real numbers,

if |o-yl<min{g(z),g(y)}, then |f(x)-f(y)|<e.

Prove that f is the pointwise limit of a sequence of continuous R — R functions, i.e., there is a
sequence hy, ho, ... of continuous R - R functions such that lim h,(z) = f(z) for every z € R.
n—oo

(proposed by Camille Mau, Nanyang Technological University, Singapore)

Hint: Start from a segment in place of R and use its compactness. Or recall the cool things called
“the Lebesgue characterization theorem” and “the Baire characterization theorem”.

Solution 1. Since g depends also on ¢, let us use the notation g(x,¢). Considering only e = 1/n for
positive integer n will suffice to reach our conclusions, hence we may use min{g(z,1/m) | m <n} in
place of g(x,1/n) and thus assume g(z,¢) decreasing in e.

For any x € R, choose 6, (z) = min{1/n,g(x,1/n)}. Of the 0,(z)-neighborhoods of all x select
(using local compactness of the reals) an inclusion-minimal locally finite covering {U;}. From its
inclusion-minimality it follows that we may enumerate U; with i € Z so that U; nU; # @ only when
li — j| < 1 and the enumeration goes from left to right on the real line. For an assumed n, let x; be
the center of U; and ¢; = d,(z;), so that U; = (x; — 0;,x; + 0;) and §; < 1/n for all i.

Now define a continuous f, : R — R so that it equals f(z;) in U; ~ (U;-1 U Uyy1), and so that f,
changes continuously between f(z;_1) and f(z;) in the intersection U;_1 n Uj;.

Now we show that f,, - f pointwise. Fix a point z and € = 1/m > 0, and choose

n>max{1/g(x,e),m}.

Examine the construction of f,, for any such n. Observe that g(x,¢) > 1/n > §; and 1/n < 1/m. There
are two cases:



e x belongs to the unique U;. Then using the monotonicity of g(x,¢) in £ we have

|z; — x| < §; < min {g ([Ei, %) ,g(:v,e)} <min{g(z;,¢),9(x,€)}.

Hence

[f (@) = ful) =1 f (2) = fzi)] <&

e 1 belongs to U;_; N U;. Similar to the previous case,

[f (@) = f(@ia), [ F(2) = f(2)] <.

Since f,(x) is between f,(z;_1) = f(x;-1) and f,(z;) = f(z;) by construction, we have
f (@) - ful@)] <e.

We have that |f(z) - f.(x)| < € holds for sufficiently large n, which proves the pointwise convergence.

Solution 2. This solution uses the Baire characterization theorem: A function f: R - R is a
pointwise limit of continuous functions if and only if its restriction to every non-empty closed subset
of R has a point of continuity.

Assume the contrary in view of the above theorem: A € R is a non-empty closed set and f has
no point of continuity in A. Let’s think that f is defined only on A.

Then for all x € A there exist rationals p < ¢ for which limsup, f > ¢, liminf, f < p. Apply the
Baire category theorem: If a complete metric space A is a countable union of sets then some of the
sets is dense in a positive radius metric ball of A. It follows that there exist p and ¢, which serve for
a subset B c A which is dense on a certain ball (in the induced metric of the real line) A; c A. It
yields that both sets @ = f~!(q,0) and P = f~1(-o0,p) are dense in A;.

Choose € = (¢ —p)/10 and find k for which the set S = {z: g(x) > 1/k} is also dense on a certain
ball Ay c A;. Partition S into subsets where f(z) > (p+¢)/2 and f(z) < (p+ q)/2, one of them is
again dense somewhere in Az, say the latter.

Now take any point y € A3 n @ and a very close (within distance min(1/k,g(y))) to y point x
with g(x) > 1/k but f(z) < (p+¢)/2. This pair z,y contradicts the property of f from the problem
statement.

Solution 3. This solution uses the Lebesgue characterization theorem: If f:R — R is a function
and, for all real ¢, the sublevel and superlevel sets {x | f(x) > ¢}, {x | f(x) < ¢} are countable
intersections of open sets then f is a pointwise limit of continuous functions.

Now the solution follows from the formula with a countable intersection of the unions of intervals:

wli@>a= 1 U (r-min{po (o)} oemin{zo(s 1)) (+)
e

and the similar formula for {z: f(z) < c¢}. It remains to prove (*).

The left hand side is obviously contained in the right hand side, just put y = z.

To prove the opposite inclusion assume the contrary, that f(x) < ¢, but z is contained in the
right hand side. Choose a positive integer n such that f(x) < c—1/n and k such that g(z,1/n) > 1/k.
Then, since x belongs to the right hand side, we see that there exists y such that f(y) > ¢ and

. 1} 1 ) 1 1
|.T—y| < mln{g (y7 _)7_} < mln{g (y7 _) ,g(l‘,—)},
n) k n n

which yields f(z) > f(y) - 1/n > ¢-1/n, a contradiction.



