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Solutions

Problem 1. Let A be a real n × n matrix such that A3 = 0.
(a) Prove that there is a unique real n × n matrix X that satisfies the equation

X +AX +XA2 = A.

(b) Express X in terms of A.

(proposed by Bekhzod Kurbonboev, Institute of Mathematics, Tashkent)

Hint: (a) Multiply the equation by some power of A from left and another power of A from right.
(b) Substitute repeatedly X = A −AX −XA2.

Solution 1. First suppose that some matrix X satisfies the equation. We can obtain new equations
if we multiply the given equation by some power of A from left and another power of A from right.
For example,

A2(X +AX +XA2)A2 = A2XA2 +A3 ⋅XA2 +A2XA ⋅A3 = A2XA2.

The right-hand side is A2 ⋅A ⋅A2 = A3 ⋅A2 = 0, so

A2XA2 = A2(X +AX +XA2)A2 = A5 = 0. Similarly,
A2X = A2(X +AX +XA2) = A3 = 0

AXA = A(X +AX +XA2)A = A3 = 0

XA2 = (X +AX +XA2)A2 = A3 = 0

AX = A(X +AX +XA2)A = A2. Finally
X = A −AX −XA2 = A −A2.

Hence, no matrix other than A −A2 can satisfy the equation.
Note that the argument above does not prove that the matrix X = A −A2 satisfies the equation,

because the steps cannot be done in reverse order. That must be verified separately. Indeed,

X +AX +XA2 = (A −A2) +A(A −A2) + (A −A2)A2 = A −A4 = A.

Hence, X = A −A2 is the unique solution of the equation.
Remark. By multiplying the equation by An from left and by Ak from right we can get 9 different equations:

X +AX +XA2 = A XA +AXA = A2 XA2 +AXA2 = 0
AX +A2X +AXA2 = A2 AXA +A2XA = 0 AXA2 +A2XA2 = 0

A2X +A2XA2 = 0 A2XA = 0 A2XA2 = 0

These formulas provide a system of linear equations for the nine matrices X, AX, A2X, XA, AXA, A2XA,
XA2, AXA2 and A2XA2.
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Solution 2. We use a different approach to express X in terms of A. If some matrix X satisfies
the equation then

X = A −AX −XA2.

Let us substitute this identity in the right-hand side repeatedly until X cancels out everywhere.
Notice that by the condition A3 = 0 we have A3 = A4 = A5 = A3X =XA4 = AXA4 = A3XA2 = 0, so

X = A −AX −XA2

= A −A(A −AX −XA2) − (A −AX −XA2)A2

= A − (A2 −A2X −AXA2) − (A3 −AXA2 −XA4)
= A −A2 +A2X + 2AXA2

= A −A2 +A2(A −AX −XA2) + 2A(A −AX −XA2)A2

= A −A2 + (A3 −A3X −A2XA2) + 2(A4 −A2XA2 −AXA4)
= A −A2 − 3A2XA2

= A −A2 − 3A2(A −AX −XA2)A2

= A −A2 − 3(A5 −A3XA2 −A2XA4)
= A −A2.

To complete the solution, we have to verify that X = A−A2 is indeed a solution. This step is the
same as in Solution 1.

Solution 3. Let B = I −A +A2 so that B is the inverse of I +A. Multiplying by B from the left,
the equation is equivalent to

X +BXA2 = BA. (1)

Now assume X satisfies the equation. Multiplying by A2 from the right and using A3 = 0 we get
XA2 = 0. Hence the equation simplifies to X = BA = A −A2.

On the other hand, X = BA obviously satisfies (1).

Problem 2. Let n and k be fixed positive integers, and let a be an arbitrary non-negative integer.
Choose a random k-element subset X of {1,2, . . . , k + a} uniformly (i.e., all k-element subsets are
chosen with the same probability) and, independently of X, choose a random n-element subset Y of
{1, . . . , k + n + a} uniformly.

Prove that the probability
P(min(Y ) >max(X))

does not depend on a.

(proposed by Fedor Petrov, St. Petersburg State University)

Hint: The sets X and Y with min(Y ) >max(X) are uniquely determined by X ∪ Y .

Solution 1. The number of choices for (X,Y ) is (k+a
k
) ⋅ (n+k+an

).
The number of such choices with min(Y ) >max(X) is equal to (n+k+a

n+k ) since this is the number of
choices for the n+k-element set X ∪Y and this union together with the condition min(Y ) >max(X)
determines X and Y uniquely (note in particular that no elements of X will be larger than k + a).
Hence the probability is

(n+k+a
n+k )

(k+a
k
) ⋅ (n+k+an

)
= 1

(n+k
k
)

where the identity can be seen by expanding the binomial coefficients on both sides into factorials
and canceling.
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Since the right hand side is independent of a, the claim follows.

Solution 2. Let f be the increasing bijection from {1,2, . . . , k + a} to {1, . . . , k + a + n} ∖ Y . Note
that min(Y ) >max(X) if and only if min(Y ) >max(f(X)).

Note that
{Zn ∶= Y,Zk ∶= f(X), Za ∶= f({1,2, . . . , k + a} ∖X)}

is a random partition of
{1, . . . , n + k + a} = Zn ⊔Zk ⊔Za

into an n-subset, k-subset, and a-subset.
If an a-subset Za is fixed, the conditional probability that min(Zk) > max(Zn) always equals

1/(n+kk ). Therefore the total probability also equals 1/(n+kk ).

Problem 3. We say that a positive real number d is good if there exists an infinite sequence
a1, a2, a3, . . . ∈ (0, d) such that for each n, the points a1, . . . , an partition the interval [0, d] into
segments of length at most 1/n each. Find

sup{d ∣ d is good}.

(proposed by Josef Tkadlec)

Hint: To get an upper bound, use that some of the gaps after n steps are still intact some steps
later.

Solution. Let d⋆ = sup{d ∣ d is good}. We will show that d⋆ = ln(2) ≐ 0.693.

1. d⋆ ≤ ln 2:

Assume that some d is good and let a1, a2, . . . be the witness sequence.

Fix an integer n. By assumption, the prefix a1, . . . , an of the sequence splits the interval [0, d]
into n + 1 parts, each of length at most 1/n.
Let 0 ≤ `1 ≤ `2 ≤ ⋅ ⋅ ⋅ ≤ `n+1 be the lengths of these parts. Now for each k = 1, . . . , n after placing
the next k terms an+1, . . . , an+k, at least n + 1 − k of these initial parts remain intact. Hence
`n+1−k ≤ 1

n+k . Hence

d = `1 + ⋅ ⋅ ⋅ + `n+1 ≤
1

n
+ 1

n + 1
+ ⋅ ⋅ ⋅ + 1

2n
. (2)

As n→∞, the RHS tends to ln(2) showing that d ≤ ln(2).
Hence d⋆ ≤ ln 2 as desired.

2. d⋆ ≥ ln 2:

Observe that

ln 2 = ln 2n − lnn =
n

∑
i=1

ln(n + i) − ln(n + i − 1) =
n

∑
i=1

ln(1 + 1

n + i − 1
) .

Interpreting the summands as lengths, we think of the sum as the lengths of a partition of the
segment [0, ln 2] in n parts. Moreover, the maximal length of the parts is ln(1 + 1/n) < 1/n.
Changing n to n+1 in the sum keeps the values of the sum, removes the summand ln(1+1/n),
and adds two summands

ln(1 + 1

2n
) + ln(1 + 1

2n + 1
) = ln(1 + 1

n
) .
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This transformation may be realized by adding one partition point in the segment of length
ln(1 + 1/n).
In total, we obtain a scheme to add partition points one by one, all the time keeping the
assumption that once we have n−1 partition points and n partition segments, all the partition
segments are smaller than 1/n.
The first terms of the constructed sequence will be a1 = ln 3

2 , a2 = ln 5
4 , a3 = ln 7

4 , a4 = ln 9
8 , . . . .

Remark. This remark describes in fact the same solution from a different view and some ideas behind it.
It could be erased after marking is finished. Estimate (2) is quite natural. To prove that RHS tends to ln 2
we use some integral estimates by

∫
2n+1

n

1

x
dx = ln(2n + 1) − lnn.

Here we can observe that

∫
2n

n

1

x
dx = ln 2

is independent of n. This can help us with the construction since the above equality means

I1 = ∫
n+1

n

1

x
dx = ∫

2n+1

2n

1

x
dx + ∫

2n+2

2n+1
1

x
dx = I2 + I3,

so, interval of length I1 can be splitted into two intervals of lengths I2 and I3. In fact, after placing the point
an in the construction for d = ln 2, the lengths of the n + 1 intervals are

∫
n+2

n+1
1

x
, ∫

n+3

n+2
1

x
, . . . , ∫

2n+2

2n+1
1

x

with total length

d = ∫
2n+2

n+1
1

x
= ln 2.

Problem 4. Let f ∶ R → R be a function. Suppose that for every ε > 0, there exists a function
g ∶ R→ (0,∞) such that for every pair (x, y) of real numbers,

if ∣x − y∣ <min{g(x), g(y)}, then ∣f(x) − f(y)∣ < ε.
Prove that f is the pointwise limit of a sequence of continuous R → R functions, i.e., there is a
sequence h1, h2, . . . of continuous R→ R functions such that lim

n→∞hn(x) = f(x) for every x ∈ R.

(proposed by Camille Mau, Nanyang Technological University, Singapore)

Hint: Start from a segment in place of R and use its compactness. Or recall the cool things called
“the Lebesgue characterization theorem” and “the Baire characterization theorem”.

Solution 1. Since g depends also on ε, let us use the notation g(x, ε). Considering only ε = 1/n for
positive integer n will suffice to reach our conclusions, hence we may use min{g(x,1/m) ∣ m ≤ n} in
place of g(x,1/n) and thus assume g(x, ε) decreasing in ε.

For any x ∈ R, choose δn(x) = min{1/n, g(x,1/n)}. Of the δn(x)-neighborhoods of all x select
(using local compactness of the reals) an inclusion-minimal locally finite covering {Ui}. From its
inclusion-minimality it follows that we may enumerate Ui with i ∈ Z so that Ui ∩ Uj ≠ ∅ only when
∣i − j∣ ≤ 1 and the enumeration goes from left to right on the real line. For an assumed n, let xi be
the center of Ui and δi = δn(xi), so that Ui = (xi − δi, xi + δi) and δi < 1/n for all i.

Now define a continuous fn ∶ R → R so that it equals f(xi) in Ui ∖ (Ui−1 ∪ Ui+1), and so that fn
changes continuously between f(xi−1) and f(xi) in the intersection Ui−1 ∩Ui.

Now we show that fn → f pointwise. Fix a point x and ε = 1/m > 0, and choose

n >max{1/g(x, ε),m} .
Examine the construction of fn for any such n. Observe that g(x, ε) > 1/n > δi and 1/n < 1/m. There
are two cases:
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• x belongs to the unique Ui. Then using the monotonicity of g(x, ε) in ε we have

∣xi − x∣ < δi ≤min{g (xi,
1

n
) , g (x, ε)} ≤min{g(xi, ε), g(x, ε)} .

Hence
∣f(x) − fn(x)∣ = ∣f(x) − f(xi)∣ < ε.

• x belongs to Ui−1 ∩Ui. Similar to the previous case,

∣f(x) − f(xi−1)∣, ∣f(x) − f(xi)∣ < ε.

Since fn(x) is between fn(xi−1) = f(xi−1) and fn(xi) = f(xi) by construction, we have

∣f(x) − fn(x)∣ < ε.

We have that ∣f(x)−fn(x)∣ < ε holds for sufficiently large n, which proves the pointwise convergence.

Solution 2. This solution uses the Baire characterization theorem: A function f ∶ R → R is a
pointwise limit of continuous functions if and only if its restriction to every non-empty closed subset
of R has a point of continuity.

Assume the contrary in view of the above theorem: A ⊆ R is a non-empty closed set and f has
no point of continuity in A. Let’s think that f is defined only on A.

Then for all x ∈ A there exist rationals p < q for which lim supx f > q, lim infx f < p. Apply the
Baire category theorem: If a complete metric space A is a countable union of sets then some of the
sets is dense in a positive radius metric ball of A. It follows that there exist p and q, which serve for
a subset B ⊂ A which is dense on a certain ball (in the induced metric of the real line) A1 ⊂ A. It
yields that both sets Q = f−1(q,∞) and P = f−1(−∞, p) are dense in A1.

Choose ε = (q − p)/10 and find k for which the set S = {x ∶ g(x) > 1/k} is also dense on a certain
ball A2 ⊂ A1. Partition S into subsets where f(x) > (p + q)/2 and f(x) ⩽ (p + q)/2, one of them is
again dense somewhere in A3, say the latter.

Now take any point y ∈ A3 ∩ Q and a very close (within distance min(1/k, g(y))) to y point x
with g(x) > 1/k but f(x) ⩽ (p + q)/2. This pair x, y contradicts the property of f from the problem
statement.

Solution 3. This solution uses the Lebesgue characterization theorem: If f ∶ R → R is a function
and, for all real c, the sublevel and superlevel sets {x ∣ f(x) ⩾ c}, {x ∣ f(x) ⩽ c} are countable
intersections of open sets then f is a pointwise limit of continuous functions.

Now the solution follows from the formula with a countable intersection of the unions of intervals:

{x ∣ f(x) ⩾ c} =
∞
⋂

n,k=1
⋃
y∈R

f(y)⩾c

(y −min{1
k
, g (y, 1

n
)} , y +min{1

k
, g (y, 1

n
)}) (∗)

and the similar formula for {x∶ f(x) ⩽ c}. It remains to prove (∗).
The left hand side is obviously contained in the right hand side, just put y = x.
To prove the opposite inclusion assume the contrary, that f(x) < c, but x is contained in the

right hand side. Choose a positive integer n such that f(x) < c−1/n and k such that g(x,1/n) > 1/k.
Then, since x belongs to the right hand side, we see that there exists y such that f(y) ⩾ c and

∣x − y∣ <min{g (y, 1
n
) , 1
k
} ⩽min{g (y, 1

n
) , g (x, 1

n
)} ,

which yields f(x) ⩾ f(y) − 1/n ⩾ c − 1/n, a contradiction.
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