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Day 2, July 27, 2020

Problem 5. Find all twice continuously differentiable functions f : R — (0, +00) satisfying

f'(@)f () = 2(f'(x))”

for all x € R.
Karen Keryan, Yerevan State University & American University of Armenia, Yerevan

Solution. We shall show that only positive constant functions satisfy the condition.

1
Let g(z) = ——. Notice that

f(x)
o () - () - (A2

so the positive function g(z) is concave. We show that g must be constant.
Take two arbitrary real numbers a < b. By the concavity of ¢, for all u < a and v > b we

have
g9(a) = g(u) _ g(b) —g(a) _ g(v) —g(b)
a—u —  b—a T wv—=0b

Combining this with g(u), g(v) > 0 we get

e

Now by taking limits u — —oo and v — co we obtain

0> 90 —9(@ _

- b—a 7

so g(a) = g(b). This holds for any pair (a,b), so g(x) is constant and f(x) = 1/g(z) also is
constant.

If f is constant then f' = f” =0, so the condition is satisfied.

Remark. Instead of the function 1/f(z), the same idea works with arctan f(x):

_ ST ) =20 SO ) 2O ) S =200

(arctan f(z))"” (1+ f2)2 (1+ f2)2 Y

As can be seen, arctan f(z) is a bounded convex function, therefore it must be constant.

Problem 6. Find all prime numbers p for which there exists a unique a € {1,2,...,p} such
that a® — 3a + 1 is divisible by p.
Géza Kos, Lorand Eotvos University, Budapest

Solution 1. We show that p = 3 the only prime that satsfies the condition.



Let f(x) = 2® — 3z + 1. As preparation, let’s compute the roots of f(z). By Cardano’s
formula, it can be seen that the roots are

.| —1 —1\? —3\? 2 2 2 4
YRer 74_\/(7) _(?3) :2Re§/cos§+isin§:{QCOS?W,QCOSEW,QCOS%}

where all three values of the complex cubic root were taken.

Notice that, by the trigonometric identity 2 cos2t = (2cost)? — 2, the map p(z) = 22 — 2
cyclically permutes the three roots. We will use this map to find another root of f, when it is
considered over [F,,.

Suppose that f(a) = 0 for some a € F, and consider

o) = J8) _ @) = fla)

= = = 2%+ az + (a* - 3).
r—a r—a

We claim that b = a® — 2 is a root of g(z). Indeed,
g(b) = (a* = 2)* +a(a® —2) + (a®* = 3) = (a+1) - f(a) = 0.

By Vieta’s formulas, the other root of g(z)is c= —a — b= —a* —a + 2.
If f has a single root then the three roots must coincide, so

a=a’>—2=—-a*>—a+2.

Here the quadratic equation a = a® — 2, or equivalently (a + 1)(a — 2) = 0, has two solutions,
a=—1and a =2. By f(—1) = f(2) = 3, in both cases we have 0 = f(a) = 3, so the only
choice is p = 3.

Finally, for p = 3 we have f(1) = —1, f(2) = 3 and f(3) = 19, from these values only f(2)
is divisible by 3, so p = 3 satisfies the condition.

Solution 2 (outline) Define f(x) and g(x) like in Solution 1. The discriminant of g(z) is
A, =a® —4(a* - 3) = 12 — 3a*.

We show that A, has a square root in F,,.
Take two integers k, m (to be determinated later) and consider

A, = A, + (ka+m)f(a) = ka* + ma® — (3k + 1)a® + (k — 3m)a + (m + 12).

Our goal is to choose k, m in such a way that the last expression is a complete square. Either
by direct calculations or guessing, we can find that £k = m = 4 works:

A, = A, + (4a+4)f(a) = 4a* + 4a® — 15a® — 8a + 16 = (2a* + a — 4)*.

If p # 2 then we can conclude that f(x) has either no or three roots, therefore p is suitable
if and only is f(z) is a complete cube: z° — 3z + 1 = (z — a)3. From Vieta’s formulas a® = 1,
so a # 0 and 3a = 0, which is possible if p = 3.

For p = 3 we have f(x) = (z + 1), so p = 3 is suitable.

The case p = 2 must be checked separately because the quadratic formula contains a division
by 2. f(1) = —1 and f(2) = 3, so p = 2 is not suitable.

Solution 3 (outline) Assume p > 3; the cases p = 2 and p = 3 will be checked separately.

2



Let f(z) = 2® — 3z + 1 and suppose that a € F, is a root of f(z), and let b,c € Fj2 be the
other two roots. The discriminant Ay of f(z) can be expressed by the elementary symmetric
polynomials of a, b, ¢; it can be calculated that

Ap=(b—c)*(a—0b)*(a—c)*=81=9%

" (b—c)(a—b)(a—c)=29 €F,.

Notice that Ay # 0, so the three roots are distinct.

Either b,c € F, or b, c are conjugate elements in F,2 \ [F,, we have (a —b)(a — ¢) € F), so

L (b—c)(a—b)(a—c)
b—c= (a—b)(a—0)

follows that b, c € F,. Now f(x) has three distinct roots in F,, so p cannot be suitable.

p = 2 does not satisfies the condition because both f(1) = —1 and f(2) = 3 are odd. p =3
is suitable, because f(2) = 3 is divisible by 3 while f(1) = —1 and f(3) = 19 are not.

€ IF,. From Vieta’s formulas we have b + ¢ € F,, as well; since p # 2, it

Problem 7. Let G be a group and n > 2 be an integer. Let H; and Hy be two subgroups of
G that satisty

[G:H|=|G:Hy)=n and [G:(H,NHy)]=n(n-1).

Prove that H,; and H, are conjugate in G.

(Here [G : H] denotes the indez of the subgroup H, i.e. the number of distinct left cosets
xH of H in G. The subgroups H; and H, are conjugate if there exists an element g € G such
that g_lng = HQ)

Ilya Bogdanov and Alexander Matushkin, Moscow Institute of Physics and Technology

Solution 1. Denote K = H; N Hy. Since
n(n—1)=[G: K|=|[G: Hi][H, : K] =n[H; : K],

we obtain that [H; : K] =n — 1. Thus, the subgroup H; is partitioned into n — 1 left cosets of
K, say Hy = |_|;:11 h; K. Therefore, the set H;Hy = {ab: a € Hy, b € Hy} is partitioned as

n—1 n—1 n—1
H,Hy = <|_| hiK> H, = |_| hK Hy = |_| h; H,.
=1

i=1 =1

The last equality holds because K C Hy, so KHy = Hy. The last expression is a disjoint
union since

hiHyNh;Hy # @ <= h;'h; € Hy < h;'h; € K < h; =h,.

Thus, HyH> is a disjoint union of n — 1 left cosets with respect to Ho; hence L = G\ (H1 H»)
is the remaining such left coset. Similarly, L is a right coset with respect to H;. Therefore, for
each g € L we have L = gH, = H,g, which yields Hy = g~ 'Hg.

Solution 2. Put G/H; = X and G/H,; =Y, those are n-element sets acted on by G from the
left. Let G act on X x Y from the left coordinate-wise, consider this product as a table, with
rows being copies of X and columns being copies of Y.

The stabilizer of a point (z,y) in X x Y is H; N Hy. By the orbit-stabilizer theorem, we
obtain that the orbit Z of (z,y) has size [G : Hy N Hy] = n(n —1).

If Z contains a whole column then there is a subgroup G; of G that stabilizes x and acts
transitively on Y. If we conjugate G; to a group G, then its action remains transitive on Y,
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so by conjugation we obtain columns of the table. Since G acts transitively on X, we cover all
the columns. It follows that Z = X x Y, so

nin—1)=|Z] =|X x Y| =n?

which is a contradiction.

Hence every column of X x Y has an element not from Z. The same holds for the rows of
X x Y. There are n elements not from Z in total and they induce a bijection between X and
Y which allows us to identify X =Y.

After this identification, every element (z,z) from the diagonal of X x X (i.e. from (X x
X)\ Z) is moved to a diagonal element by any g € G, because gx = gz. In this formula the
action of ¢ in the left hand side and the action of ¢ in the right hand side are the actions of g
on X and Y respectively.

Therefore our bijection between X and Y is an isomorphism of sets with a left action of G.
Since H; and H, are stabilizers of the points in the same transitive action of GG, we conclude
that they are conjugate.

Remark. The situation in the problem is possible for every n > 2: let G = S,, and let H;
an Hy be the stabilizer subgroups of two elements.



Problem 8. Compute

n

1 n
lim ——— —1)F log k.
00 loglognz( ) (k:) ogk

k=1

(Here log denotes the natural logarithm.)
Fedor Petrov, St. Petersburg State University

Solution 1. Answer: 1.
The idea is that if f(k) = [ ¢*, then

St ) s = [a-ar

To relate this to logarithm, we may use the Frullani integrals

x© —x —kx x —x oo —kx © —x x —x
et —e _ e e ) e e
/ ——dr = lim dr — / dr = lim —dx — / dr =
0 c k

T c—+0 /.. x x c—+0 /. X c X
ke —=x ke —x 1
lim dr = logk + lim dz = log k.
c—+0 c €T c—+0 c T

This gives the integral representation of our sum:

- n ® _e 4]l —(1l—eF)n
A= Z<_1)k(k) log k _/0 1:( " i,
k=1

Now the problem is reduced to a rather standard integral asymptotics.
We have (1—e™*)" > 1—ne~" by Bernoulli inequality, thus 0 < —e " +1—(1—e™*)" < ne™ 7,
and we get

oo, —x 1_ 1_ —x\n oo —x oo
OS/ ¢t ( ) dxén/ ¢ denM_l/ e Cdr =nM te™M,
M

M x M T

So choosing M such that MeM = n (such M exists and goes to oo with n) we get

M -z 1— (1 — %)
A:O(1)+/ c = x( ) e,
0

Note that for 0 < # < M we have e > e™™ = M/n, and (1 — e™®)" 1 L e7¢ "1
e~Mm=1/n tends to 0 uniformly in 2. Therefore

/M (=== o /M 1—er

x 0 x

Finally

M 1 _ 1 1 Lz M T M
/ I / C da +/ C dx +/ dx =
0 xr 0 x 1 z 1T
log M + O(1) = log(M +log M) + O(1) = loglogn + O(1),
and we get A = (1+ o(1))loglogn.

Solution 2. We start with a known identity (a finite difference of 1/z).



Expand the rational function

m!
(x4+1)...(x+m)

fla) = -

as the linear combination of simple fractions f(z) = > 7" ¢;/(x + j). To find ¢; we use

s = (o + DN Ly = 1 ()

So we get

- mY 1 m!
Z(_l)k(k>x+k’::1:(:1:+1)...(:1:+m)' S

k=0
Another known identity we use is

s -z ()G - () e

k=j+1 k=j+1
. . _ rkde k-1 _ [l dz
Finally we write loghk = [ 2 = 23:1 I, where I; = |, ol

Now we have

n

S = Z(—nk(Z) log k = g;(—nk(;‘) PIED

k=1
1ot n—1\ dzx A n—1\ dzx
[ e (TN [ (e (") e
0 = jJe+i o \e = jiJe+i) T m

J]=

/01 G Tt 1)@.?@«11 (n 1))) do = /01 d?x (1 T T2 122 .1. (4z/n— 1))) '

So S is again expressed as an integral, for which it is not hard to get an asymptotics.
Since €' > 1+t for all real t (by convexity or any other reason), we have vy > 1 -y =

Ll > 1 and -2 > L = ¢e7¥ for y > 0. Therefore

1+y = 1+y 1+y ey
¥y 1 ~y
€ 2 m 2 e 7,y > 0.
Using this double inequality we get
€x2<1+2%+...+7(nj1)2)—x(1+%+...+ﬁ) 1 S p-a(lti+tity)

T (1+2)(+2/2)...(1+z/(n—-1)) "

Since x%(1 4+ 1/2% +...) < 222 < 22, we conclude that

1 = e " where —
(1+2)(1+x/2)...(1+2/(n—-1)) ,wh 2+

ie., C, =logn+ O(1). Thus

Udx Cn dt Cn dt 1 dt Cndt
S: _1_ —Chx — _1_ —t :/ - / 1_ —t\ "~ / -t
/M,<e >/Ot<€> B T

=log C,, + O(1) = loglogn + O(1).



