IMC 2020 Online

Day 1, July 26, 2020

Problem 1. Let n be a positive integer. Compute the number of words w (finite sequences of letters) that satisfy all the following three properties:

- (1) w consists of n letters, all of them are from the alphabet $\{a, b, c, d\}$;
- (2) w contains an even number of letters **a**;
- (3) w contains an even number of letters **b**.

(For example, for n = 2 there are 6 such words: aa, bb, cc, dd, cd and dc.)

Armend Sh. Shabani, University of Prishtina

Solution 1. Let $N = \{1, 2, ..., n\}$. Consider a word w that satisfies the conditions and let $A, B, C, D \subset N$ be the sets of positions of letters a, b, c and d in w, respectively. By the definition of the words we have $A \sqcup B \sqcup C \sqcup D = N$. The sets A and B are constrained to have even sizes.

In order to construct all suitable words w, choose the set $S = A \cup B$ first; by the conditions, |S| = |A| + |B| must be even. It is well-known that an *n*-element set (with $n \ge 1$) has 2^{n-1} even subsets, so there are 2^{n-1} possibilities for S.

If $S = \emptyset$ then we can choose $C \subset N$ arbitrarily, and then the set $D = S \setminus C$ is determined D uniquely. Since N has 2^n subsets, we have 2^n options for set C and therefore 2^n suitable words w with $S = \emptyset$.

Otherwise, if k = |S| > 0, we have to choose an arbitrary subset C of $N \setminus S$ and an even subset A of S; then $D = (N \setminus S) \setminus C$ and $B = S \setminus A$ are determined and |B| = |S| - |A| will automatically be even. We have 2^{n-k} choices for C and 2^{k-1} independent choices for A; so for each nonempty even S we have $2^{n-k} \cdot 2^{k-1} = 2^{n-1}$ suitable words.

The number of nonempty even sets S is $2^{n-1}-1$, so in total, the number of words satisfying the conditions is

$$1 \cdot 2^{n} + (2^{n-1} - 1) \cdot 2^{n-1} = 4^{n-1} + 2^{n-1}.$$

Solution 2. Let a_n denote the number of words of length n over $\mathcal{A} = \{a, b, c, d\}$ such that a and b appear even number of times. Further, we define the following sequences for the number of words of length n, all over \mathcal{A} .

- b_n the number of words with an odd number of **a**'s and even number of **b**'s
- c_n the number of words with even number of **a**'s and an odd number of **b**'s
- d_n the number of words with an odd number of **a**'s and an odd number of **b**'s

We will call them A-words, B-words, C-words and D-words, respectively. It is clear that $a_1 = 2$ and that

$$a_n + b_n + c_n + d_n = 4^n.$$

First, we find a recurrence relation for a_n . If an A-word of length n begins with c or d, it can be followed by any A-word of length n-1, contributing with $2a_{n-1}$. If an A-word of length n begins with a, it can be followed by any word of length n-1 that contains an odd number

of a's and even number of b's, thus contributing with b_{n-1} . If an A-word of length n begins with b, it can be followed by any word of length n-1 that contains even number of a's and an odd number of b's, thus contributing with c_{n-1} . Therefore we have the following recurrence relation:

$$a_n = 2a_{n-1} + b_{n-1} + c_{n-1}.$$
(1)

Next, we find a recurrence relation for b_n .

If a B-word of length n begins with c or d, it can be followed by any B-word of length n-1, contributing with $2b_{n-1}$. If a B-word of length n begins with a, it can be followed by any word of length n-1 that contains even number of a's and even number of b's, contributing with a_{n-1} . If a B-word of length n begins with b, it can be followed by any word of length n-1 that contains an odd number of b's, contributing with $d_{n-1} = 4^{n-1} - a_{n-1} - b_{n-1} - c_{n-1}$. Therefore we have the following recurrence relation:

$$b_n = b_{n-1} + 4^{n-1} - c_{n-1}.$$
(2)

Now observe that $b_k = c_k$ for all k, since simultaneously replacing a's to b's and vice versa we get a C-word from a B-word. Therefore (2) yields $b_n = 4^{n-1}$. Now (1) yields

$$a_n = 2 \cdot a_{n-1} + 2 \cdot 4^{n-2}$$

Solving the last recurrence relation (for example, diving by 2^n we get $x_n := a_n 2^{-n}$ satisfies $x_n - x_{n-1} = 2^{n-3}$, and it remains to sum up consecutive powers of 2) we get

$$a_n = 2^{n-1} + 4^{n-1}.$$

Solution 3. Consider the sum

$$\frac{(a+b+c+d)^n + (-a-b+c+d)^n + (-a+b+c+d)^n + (a-b+c+d)^n}{4}.$$
 (*)

Expanding the parentheses as

$$(a + b + c + d)^n = (a + b + c + d)(a + b + c + d) \dots (a + b + c + d),$$

we get a sum of products $x_1 \ldots x_n$, $x_i \in \{a, b, c, d\}$, naturally corresponding to the words of length n over the alphabet $\{a, b, c, d\}$. Consider the other terms in the numerator similarly.

If a word $x_1 \dots x_n$ contains A, B, C, D letters a, b, c and d respectively, we get $a^A b^B c^C d^D$ with the coefficient

$$\frac{1+(-1)^{A+B}+(-1)^A+(-1)^B}{4} = \frac{(1+(-1)^A)(1+(-1)^B)}{4} = \begin{cases} 1, & \text{if } A \text{ and } B \text{ are even} \\ 0, & \text{otherwise.} \end{cases}$$

Hence, by substituting a = b = c = d = 1 in (*) we get the answer $(4^n + 2^{n+1})/4 = 4^{n-1} + 2^{n-1}$.

Problem 2. Let A and B be $n \times n$ real matrices such that

$$\operatorname{rk}(AB - BA + I) = 1$$

where I is the $n \times n$ identity matrix.

Prove that

$$\operatorname{trace}(ABAB) - \operatorname{trace}(A^2B^2) = \frac{1}{2}n(n-1).$$

 $(\operatorname{rk}(M) \text{ denotes the rank of matrix } M, \text{ i.e., the maximum number of linearly independent columns in } M. \operatorname{trace}(M) \text{ denotes the trace of } M, \text{ that is the sum of diagonal elements in } M.)$ Rustam Turdibaev, V. I. Romanovskiy Institute of Mathematics

Solution. Let X = AB - BA. The first important observation is that

$$trace(X^{2}) = trace(ABAB - ABBA - BAAB + BABA) = 2trace(ABAB) - 2trace(A^{2}B^{2})$$

using that the trace is cyclic. So we need to prove that $trace(X^2) = n(n-1)$.

By assumption, X + I has rank one, so we can write $X + I = v^t w$ for two vectors v, w. So

$$X^{2} = (v^{t}w - I)^{2} = I - 2v^{t}w + v^{t}wv^{t}w = I + (wv^{t} - 2)v^{t}w.$$

Now by definition of X we have trace(X) = 0 and hence $wv^t = trace(wv^t) = trace(v^tw) = n$ so that indeed

$$trace(X^2) = n + (n - 2)n = n(n - 1).$$

An alternative way to use the rank one condition is via eigenvalues: Since X + I has rank one, it has eigenvalue 0 with multiplicity n-1. So X has eigenvalue -1 with multiplicity n-1. Since trace(X) = 0 the remaining eigenvalue of X must be n-1. Hence

$$\operatorname{trace}(X^2) = (n-1)^2 + (n-1) \cdot 1^2 = n(n-1).$$

Problem 3. Let $d \ge 2$ be an integer. Prove that there exists a constant C(d) such that the following holds: For any convex polytope $K \subset \mathbb{R}^d$, which is symmetric about the origin, and any $\varepsilon \in (0, 1)$, there exists a convex polytope $L \subset \mathbb{R}^d$ with at most $C(d)\varepsilon^{1-d}$ vertices such that

$$(1-\varepsilon)K \subseteq L \subseteq K.$$

(For a real α , a set $T \subset \mathbb{R}^d$ with nonempty interior is a convex polytope with at most α vertices, if T is a convex hull of a set $X \subset \mathbb{R}^d$ of at most α points, i.e., $T = \{\sum_{x \in X} t_x x \mid t_x \ge 0, \sum_{x \in X} t_x = 1\}$. For a real λ , put $\lambda K = \{\lambda x \mid x \in K\}$. A set $T \subset \mathbb{R}^d$ is symmetric about the origin if (-1)T = T.)

Fedor Petrov, St. Petersburg State University

Solution [in elementary terms] Let $\{p_1, \ldots, p_m\}$ be an inclusion-maximal collection of points on the boundary ∂K of K such that the homothetic copies $K_i := p_i + \frac{\varepsilon}{2} K$ have disjoint interiors. We claim that the convex hull $L := \operatorname{conv}\{p_1, \ldots, p_m\}$ satisfies all the conditions.

First, note that by convexity of K we have aK + bK = (a+b)K for a, b > 0. It follows that $K_i \subset (1 + \frac{\varepsilon}{2})K$. On the other hand, if $k \in K$, a > 0 and and $ak \in K_i$, then

$$p_i \in ak - \frac{\varepsilon}{2}K = ak + \frac{\varepsilon}{2}K \subset (a + \frac{\varepsilon}{2})K$$

and since p_i is a boundary point of K, we get $a + \frac{\varepsilon}{2} \ge 1$, $a \ge 1 - \frac{\varepsilon}{2}$. It means that all K_i lie between $(1 - \frac{\varepsilon}{2})K$ and $(1 + \frac{\varepsilon}{2})K$. Since their interiors are disjoint, by the volume counting we obtain

$$m\left(\frac{\varepsilon}{2}\right)^d \leqslant \left(1+\frac{\varepsilon}{2}\right)^d - \left(1-\frac{\varepsilon}{2}\right)^d \leqslant (3/2)^d \varepsilon$$

(since $F(\varepsilon) = (1 + \frac{\varepsilon}{2})^d - (1 - \frac{\varepsilon}{2})^d$ is a polynomial in ε without constant term with non-negative coefficients which sum up to $(3/2)^d - (1/2)^d$), therefore $m \leq 3^d \varepsilon^{1-d}$.

It is clear that $L \subseteq K$, so it remains to prove that $(1 - \varepsilon)K \subseteq L$. Assume the contrary: there exists a point $p \in (1 - \varepsilon)K \setminus L$. Separate p from L by a hyperplane: Choose a linear functional ℓ such that $\ell(p) > \max_{x \in L} \ell(x) = \max_i \ell(p_i)$. Choose $x \in K$ such that $\ell(x) =: a$ is maximal possible. Note that by our construction $x + \frac{\varepsilon}{2}K$ has a common point with some K_i : there exists a point $z \in (x + \frac{\varepsilon}{2}K) \cap (p_i + \frac{\varepsilon}{2}K)$. We have

$$\ell(p_i) + \frac{\varepsilon}{2}a \ge \ell(z) \ge \ell(x) - \frac{\varepsilon}{2}a,$$

and therefore $\ell(p_i) \ge a(1-\varepsilon)$. Since $p \in (1-\varepsilon)K$, we obtain $\ell(p) \le a(1-\varepsilon)$. A contradiction.

Solution [in the language of Banach spaces] Equip \mathbb{R}^d with the norm $\|\cdot\|$, whose unit ball is K, call this Banach space V. Choose an inclusion maximal set $X \subset \partial K$ whose pairwise distances are $\geq \varepsilon$. Put L = conv X.

The inclusion $L \subseteq K$ follows from the convexity of K. If the inclusion $(1-\varepsilon)K \subseteq L$ fails then the Hahn-Banach theorem provides a unit linear functional $\lambda \in V^*$ such that $\max\{\lambda(L)\} = \max\{\lambda X\} \leq 1-\varepsilon$. Then the point $x \in K$, where the maximum $\max\{\lambda(K)\} = 1$ is attained (thanks to the finite dimension and compactness) is in ∂K and, as λ witnesses, at distance $\geq \varepsilon$ from all other points of L and X, contradicting the inclusion-maximality of X.

The upper bound for the cardinality |X| is obtained by noting that the $\varepsilon/2$ balls centered at the points of X are pairwise disjoint and lie in the difference of balls $(1+\varepsilon/2)K \setminus (1-\varepsilon/2)K$, whose volume is $((1+\varepsilon/2)^d - (1-\varepsilon/2)^d)$ volK, the volume of each of the small balls being $\varepsilon^d/2^d$ volK. Hence

$$|X| \le \frac{(2+\varepsilon)^d - (2-\varepsilon)^d}{\varepsilon^d} = O(\varepsilon^{1-d}).$$

Problem 4. A polynomial p with real coefficients satisfies the equation $p(x+1) - p(x) = x^{100}$ for all $x \in \mathbb{R}$. Prove that $p(1-t) \ge p(t)$ for $0 \le t \le 1/2$.

Daniil Klyuev, St. Petersburg State University

Solution 1. Denote $h(z) = p(1 - \overline{z}) - p(z)$ for complex z. For $t \in \mathbb{R}$ we have $h(it) = p(1 + it) - p(it) = t^{100}$, h(1/2 + it) = 0.

If $p(z) = c_n z^n + \ldots + c_0, c_n \neq 0$, we have

$$h(a+it) = p((1-a)+it) - p(a+it) = (1-2a) \left(nc_n i^{n-1} t^{n-1} + Q(t,a) \right)$$

for some polynomial Q having degree at most n-2 with respect to the variable t. Substituting a = 0 we get n = 101, $c_n = 1/101$.

Next, for large |t| we see that $\Re(h(a+it)) > 0$ for $0 \leq a < 1/2$.

Therefore by Maximum Principle for the harmonic function $\Re h$ and the rectangle $[0, 1/2] \times [-N, N]$ for large enough N we conclude that $\Re h$ is non-negative in this rectangle, in particular on [0, 1/2], as we need.

Solution 2. Let $p(x) = \sum_{j=0}^{m} a_j x^j$. Then

$$p(x+1)-p(x) = \sum_{j=0}^{m} a_j \left((x+1)^j - x^j \right) = a_1 + a_2(2x+1) + \dots + a_m \left(mx^{m-1} + \binom{m}{2} x^{m-2} + \dots + 1 \right)$$

This implies that m = 101, $ma_m = 1$ so $a_{101} = \frac{1}{101}$, $(m-1)a_{m-1} + a_m {m \choose 2} = 0$ so $a_{100} = -\frac{1}{2}$ etc. For $j \ge 1$ a_j is uniquely defined, a_0 may be chosen arbitrarily.

The equality $p_{2n}(\frac{1}{2}) = 0$ holds because $0 = p_{2n}(\frac{1}{2}) + p_{2n}(1-\frac{1}{2}) = 2p_{2n}(\frac{1}{2})$. Let $n \ge 1$ be an integer and let p_n be a polynomial such that $p_n(x+1) - p_n(x) = x^n$ for all x and $p_n(0) = 0 = p_n(1)$. The above considerations prove the uniqueness of p_n . We have $p_1(x) = \frac{1}{2}x^2 - \frac{1}{2}x$. Also $p'_n(x+1) - p'_n(x) = nx^{n-1} = n(p_{n-1}(x+1) - p_{n-1}(x))$. Therefore $p'_n(x) = np_{n-1}(x) + c_{n-1}$ for a properly chosen constant c_{n-1} . We shall prove that

(1)
$$p_{2n-1}(x) - p_{2n-1}(1-x) = 0$$
, $p_{2n}(x) + p_{2n}(1-x) = 0$, $c_{2n} = 0$, $p_{2n}''(x) = 2n(2n-1)p_{2n-2}(x)$

for n = 1, 2, ... and for all x. Simple computation shows that $p_1(x) - p_1(1-x) = 0$. We have $(p_2(x) + p_2(1-x))' = 2p_1(x) + c_1 - (2p_1(1-x) + c_1) = 0$ so the map $x \mapsto p_2(x) + p_2(1-x)$ is constant thus $p_2(x) + p_2(1-x) = p_2(0) + p_2(1-0) = 0$. If the first two equalities hold for some n then $(p_{2n+1}(x) - p_{2n+1}(1-x))' = (2n+1)p_{2n}(x) + c_{2n} + (p_{2n}(1-x) + c_{2n}) = 2c_{2n}$ so there exists $b \in R$ such that $p_{2n+1}(x) - p_{2n+1}(1-x) = 2c_{2n}x + b$ for all x. $p_{2n+1}(0) - p_{2n+1}(1-0) = 0$ and $p_{2n+1}(1) - p_{2n+1}(1-1) = 0$ so $2c_{2n} = 0 = b$. This proves that $p_{2n+1}(x) - p_{2n+1}(1-x) = 0$ for all x. In a similar way we shall prove the second equality: $(p_{2n+2}(x) + p_{2n+2}(1-x))' = (2n+2)p_{2n+1}'(x) + c_{2n+1} - (2n+2)(p_{2n+1}(1-x) + c_{2n+1}) = 0$ so the map $x \mapsto p_{2n+2}(x) + p_{2n+2}(1-x)$ is constant hence $p_{2n+2}(x) + p_{2n+2}(1-x) = p_{2n+2}(0) + p_{2n+2}(1-0) = 0$ for all x. Now $p_{2n+2}'(x) = ((2n+2)p_{2n+1}(x) + c_{2n+1})' = (2n+2)p_{2n+1}'(x) = (2n+2)((2n+1)p_{2n}(x) + c_{2n}) = (2n+2)(2n+1)p_{2n}(x)$. Since $p_2'(x) = 2p_1(x) + c_1 = x^2 - x + c_1$ we obtain $p_2''(x) = 2x - 1 < 0$ for $x < \frac{1}{2}$. The function p_2 is strictly concave on $[0, \frac{1}{2}]$ and $p_2(0) = 0 = p_2(\frac{1}{2})$. Therefore $p_2(x) > 0$ for $x \in (0, \frac{1}{2})$. This together with the equality $p_4(x) = 12p_2(x)$ implies that p_4 is strictly convex on $[0, \frac{1}{2}]$ so in view of $p_4(0) = 0 = p_4(\frac{1}{2})$ we conclude that $p_4(x) < 0$ for $x \in (0, \frac{1}{2})$. Easy induction shows that for $x \in (0, \frac{1}{2})$ one has $p_{2n}(x) > 0$ for an odd n and $p_{2n}(x) < 0$ for an even n. If $t \in (0, \frac{1}{2})$ then by (1) we get $p_{100}(1-t) - p_{100}(t) = -2p_{100}(t) > 0$ as required.