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Day 1, July 26, 2020

Problem 1. Let n be a positive integer. Compute the number of words w (finite sequences of
letters) that satisfy all the following three properties:

(1) w consists of n letters, all of them are from the alphabet {a,b,c,d};
(2) w contains an even number of letters a;
(3) w contains an even number of letters b.

(For example, for n = 2 there are 6 such words: aa, bb, cc, dd, cd and dc.)
Armend Sh. Shabani, University of Prishtina

Solution 1. Let N = {1,2,...,n}. Consider a word w that satisfies the conditions and let
A, B,C,D C N be the sets of positions of letters a, b, ¢ and d in w, respectively. By the
definition of the words we have ALUB UL CUD = N. The sets A and B are constrained to have
even sizes.

In order to construct all suitable words w, choose the set S = AU B first; by the conditions,
|S| = |A] + |B| must be even. It is well-known that an n-element set (with n > 1) has 27!
even subsets, so there are 27! possibilities for S.

If S = () then we can choose C C N arbitrarily, and then the set D = S\ C is determined
D uniquely. Since N has 2" subsets, we have 2" options for set C' and therefore 2" suitable
words w with S = ().

Otherwise, if & = |S| > 0, we have to choose an arbitrary subset C' of N\ S and an even
subset A of S; then D = (N \ S)\ C and B = S\ A are determined and |B| = |S| — |A| will
automatically be even. We have 2" choices for C' and 2*~! independent choices for A; so for
each nonempty even S we have 2% . 2k=1 — 9n~1 gyitable words.

The number of nonempty even sets S is 2" 7! — 1, so in total, the number of words satisfying
the conditions is

-2 4 (2" = 1) 2m =4t onh

Solution 2. Let a, denote the number of words of length n over A = {a,b,c,d} such
that a and b appear even number of times. Further, we define the following sequences for the
number of words of length n, all over A.

e b, - the number of words with an odd number of a’s and even number of b’s
e ¢, - the number of words with even number of a’s and an odd number of b’s
e d, - the number of words with an odd number of a’s and an odd number of b’s

We will call them A-words, B-words, C-words and D-words, respectively.
It is clear that a; = 2 and that

an +b, +c, +d, =4"

First, we find a recurrence relation for a,. If an A-word of length n begins with c or 4, it can
be followed by any A-word of length n — 1, contributing with 2a,_;. If an A-word of length
n begins with a, it can be followed by any word of length n — 1 that contains an odd number



of a’s and even number of b’s, thus contributing with b, ;. If an A-word of length n begins
with b, it can be followed by any word of length n — 1 that contains even number of a’s and
an odd number of b’s, thus contributing with ¢,,_;. Therefore we have the following recurrence
relation:

p, = 20p_1 + bp_1 + Cp_q. (1)

Next, we find a recurrence relation for b,.

If a B-word of length n begins with ¢ or d, it can be followed by any B-word of length n — 1,
contributing with 2b,,_;. If a B-word of length n begins with a, it can be followed by any word of
length n—1 that contains even number of a’s and even number of b’s, contributing with a,,_;. Ifa
B-word of length n begins with b, it can be followed by any word of length n—1 that contains an
odd number of a’s and an odd number of b’s, contributing with d,,_; = 4" g, 1 —b, 1 —cp .
Therefore we have the following recurrence relation:

bn = bn—l + 4n—1 — Cp—1- (2)

Now observe that b, = ¢, for all k, since simultaneously replacing a’s to b’s and vice versa
we get a C-word from a B-word. Therefore (2) yields b, = 4""!. Now (1) yields

p, =2 ay,_1+2-4"2

Solving the last recurrence relation (for example, diving by 2" we get z, = a,2™" satisfies
T, — Tp_1 = 2"73 and it remains to sum up consecutive powers of 2) we get

a, = anl + 4n71.

Solution 3. Consider the sum

(a+b+c+d)"+(-a—b+c+d)"+(—a+b+c+d)"+(a—b+c+d)"

- ()

Expanding the parentheses as
(a+b+c+d)"=(a+b+c+d)(a+b+c+d)...(a+b+c+d),

we get a sum of products ...z, z; € {a,b,c,d}, naturally corresponding to the words of
length n over the alphabet {a,b, c,d}. Consider the other terms in the numerator similarly.

If a word z; ...z, contains A, B,C, D letters a,b,c and d respectively, we get a*b"cd”
with the coefficient

4 4

1+ (DB (DA + (=D A+ (DY +(-1)B) 1, if Aand B are even
0, otherwise.

Hence, by substituting a = b= c=d = 1 in (*) we get the answer (4" +2""1)/4 = 4n~1  on—1,



Problem 2. Let A and B be n X n real matrices such that
rtk(AB—BA+1)=1

where [ is the n X n identity matrix.
Prove that

trace(ABAB) — trace(A?B?) = %n(n —1).

(rk(M) denotes the rank of matrix M, i.e., the maximum number of linearly independent
columns in M. trace(M) denotes the trace of M, that is the sum of diagonal elements in M.)
Rustam Turdibaev, V. I. Romanovskiy Institute of Mathematics

Solution. Let X = AB — BA. The first important observation is that

trace(X?) = trace(ABAB — ABBA — BAAB + BABA) = 2trace(ABAB) — 2trace(A?B?)

using that the trace is cyclic. So we need to prove that trace(X?) = n(n — 1).
By assumption, X + I has rank one, so we can write X + I = v'w for two vectors v, w. So

X2 = (vtw — 1)? = I — 2v'w + v'wv'w = T + (wo' — 2)v'w.

Now by definition of X we have trace(X) = 0 and hence wv' = trace(wv') = trace(viw) = n so
that indeed
trace(X*) =n+ (n — 2)n =n(n — 1).

An alternative way to use the rank one condition is via eigenvalues: Since X + I has rank
one, it has eigenvalue 0 with multiplicity n —1. So X has eigenvalue —1 with multiplicity n — 1.
Since trace(X) = 0 the remaining eigenvalue of X must be n — 1. Hence

trace(X*) = (n — 1)+ (n—1)- 1> =n(n — 1).



Problem 3. Let d > 2 be an integer. Prove that there exists a constant C(d) such that the
following holds: For any convex polytope K C R? which is symmetric about the origin, and
any € € (0,1), there exists a convex polytope L C R? with at most C(d)e!~? vertices such that

(1—e)K C LCK.

(For areal i, aset T C R? with nonempty interior is a conver polytope with at most o vertices, if
T is a convex hull of a set X C R? of at most a points, i.e., T = {> cytot | ts >0,y te =
1}. For a real A\, put A\K = {\z | x € K}. A set T C R? is symmetric about the origin if
(-)T =T.)

Fedor Petrov, St. Petersburg State University

Solution [in elementary terms] Let {py, ..., p,,} be an inclusion-maximal collection of points
on the boundary K of K such that the homothetic copies K; := p;+ 5K have disjoint interiors.
We claim that the convex hull L := conv{py,...,p,} satisfies all the conditions.

First, note that by convexity of K we have aKK +bK = (a+b)K for a,b > 0. Tt follows that
K; C (1+5)K. On the other hand, if ¥ € K, a > 0 and and ak € Kj, then

Di Cak—SK=ak+ <K C (a—I—E)K,
2 2 2
and since p; is a boundary point of K, we get a + 5 > 1, a > 1 — 5. Tt means that all K lie
between (1 — 5)K and (1 + 5)K. Since their interiors are disjoint, by the volume counting we

obtain ; . ;
£ € £
) <(+2) - (1-3) <62
m(z) <(1+3 3) S B/
(since Fi(e) = (14 5)?— (1 —£)% is a polynomial in & without constant term with non-negative
coefficients which sum up to (3/2)% — (1/2)9), therefore m < 3%!'~4.

It is clear that L C K, so it remains to prove that (1 —¢)K C L. Assume the contrary:
there exists a point p € (1 —¢)K \ L. Separate p from L by a hyperplane: Choose a linear
functional ¢ such that ¢(p) > max,er {(z) = max; £(p;). Choose x € K such that {(z) =: a is
maximal possible. Note that by our construction z + $K has a common point with some Kj:
there exists a point z € (z + 5K) N (p; + 5K). We have

Upo) + 50 > ((2) > (x) - Sa.

and therefore ¢(p;) > a(1 —¢). Since p € (1 —¢)K, we obtain ¢(p) < a(l —¢). A contradiction.

Solution [in the language of Banach spaces| Equip R¢ with the norm || - ||, whose unit
ball is K, call this Banach space V. Choose an inclusion maximal set X C K whose pairwise
distances are > . Put L = conv.X.

The inclusion L C K follows from the convexity of K. If the inclusion (1—¢) K C L fails then
the Hahn-Banach theorem provides a unit linear functional A € V* such that max{\(L)} =
max{\X} < 1—e¢. Then the point x € K, where the maximum max{\(K)} = 1 is attained
(thanks to the finite dimension and compactness) is in 0K and, as A witnesses, at distance > ¢
from all other points of L and X, contradicting the inclusion-maximality of X.

The upper bound for the cardinality |X| is obtained by noting that the /2 balls centered
at the points of X are pairwise disjoint and lie in the difference of balls (1+¢/2) K\ (1 —¢/2) K,
whose volume is ((1+¢/2)? — (1 —¢/2)%) volK, the volume of each of the small balls being
e?/24vol K. Hence
(2+¢e)—(2—¢)

x| < S

= 0(e'™%).




Problem 4. A polynomial p with real coefficients satisfies the equation p(z + 1) — p(z) = 2%

for all z € R. Prove that p(1 —t) > p(¢) for 0 <t < 1/2.
Daniil Klyuev, St. Petersburg State University

Solution 1. Denote h(z) = p(1 — z) — p(z) for complex z. For t € R we have h(it) =
p(1+it) — p(it) = 1% h(1/2 +it) = 0.
If p(2) = 2" + ... + co, ¢y, # 0, we have

h(a+it) = p((1 — a) + it) — p(a + it) = (1 — 2a) (nc, " 't" " 4+ Q(t, a))

for some polynomial () having degree at most n — 2 with respect to the variable t. Substituting
a=0 we get n =101, ¢, = 1/101.

Next, for large |t| we see that R(h(a +it)) > 0 for 0 < a < 1/2.

Therefore by Maximum Principle for the harmonic function A and the rectangle [0,1/2] x
[—N, N] for large enough N we conclude that $h is non-negative in this rectangle, in particular
on [0,1/2], as we need.

Solution 2. Let p(r) = >_7"a;z’. Then

p(x+1)—p(x) = Zaj (z+1) —27) = a+as(2z4+1)+- - +an, (masm_1 + <ZL) "Rt 1) :
=0

This implies that m = 101, ma,, = 1 o ajg1 = ﬁ, (m—1Dam_1 + an, (g”) =050 ajgg = —%

etc. For j > 1 a; is uniquely defined, ap may be chosen arbitrarily.

The equality po,(3) = 0 holds because 0 = pan(3) + pon(l — 3) = 2p2,(3). Let n > 1 be an
integer and let p, be a polynomial such that p,(z + 1) — p,(x) = 2™ for all x and p,(0) =0 =
pn(1). The above considerations prove the uniqueness of p,. We have p;(z) = 122 — Jz. Also
p(r+1)—p(x) =nz" ' =n(p,_1(x+1) — p,_i1(x)). Therefore p/,(x) = np,_1(x) + ¢, for
a properly chosen constant ¢,,_;. We shall prove that

(1) pon_1(z) —pon_1(1—2) =0, pon(x)+pa(1—2) =0, o, =0, py. () = 2n(2n—1)pa,_o(7)

for n =1,2,... and for all . Simple computation shows that p;(x) — p1(1 — ) = 0. We have
(12(2) + po(1 — 2)) = 21(2) + 1 — (2p1(1 — 2) + 1) = 0 50 the map 7 — pa(x) + pa(1 — ) i
constant thus pa(x) +p2(1 —x) = p2(0) + p2(1 —0) = 0. If the first two equalities hold for some
n then (pans1(2) — pongi(l —2)) = (2n 4+ D)pon(x) + con + (p2n(1 — ) + c2n) = 2¢9, 50 there
exists b € R such that pa,11(x) — pon1(1 —2x) = 2¢9,2+ b for all z. pa,1(0) — popy1(1—0) =0
and pop11(1) —pons1(1—1) = 080 2¢9, = 0 = b. This proves that pg,1(z) —pani1(1—2) = 0 for
all z. In a similar way we shall prove the second equality: (po,i2(2) + pania(l — 1)) = (2n +
2)Phni1 () + Cant1 — (2n+2) (p2nt+1(1 — ) + cant1) = 050 the map @ > papia(2) +p2pr2(l — )
is constant hence po,io(2) + pons2(l — ) = pans2(0) + ponia(l — 0) = 0 for all z. Now
Pinra(®) = (210 + 2)p2ns1(¥) + Cangr)” = (20 + 2)Phy (@) = (20 +2)((20 + Dpan(2) + c2n) =
(2n+2)(2n+1)pa, (). Since ph(x) = 2p1(z) +c; = 2? —x+¢; we obtain py(z) = 2z —1 < 0 for
x < 1.The function p, is strictly concave on [0, 1] and ps(0) = 0 = po(3). Therefore po(z) > 0
for z € (0, 3). This together with the equality ps(z) = 12ps(z) implies that p, is strictly convex
on [0, 1] so in view of ps(0) = 0 = p4(3) we conclude that ps(z) < 0 for z € (0,1). Easy
induction shows that for « € (0, 1) one has pa,(2) > 0 for an odd n and ps,(x) < 0 for an even
n. If t € (0,1) then by (1) we get pioo(1 —t) — p1oo(t) = —2p100(t) > 0 as required.



