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Day 1, July 26, 2020

Problem 1. Let n be a positive integer. Compute the number of words w (�nite sequences of
letters) that satisfy all the following three properties:

(1) w consists of n letters, all of them are from the alphabet {a, b, c, d};

(2) w contains an even number of letters a;

(3) w contains an even number of letters b.

(For example, for n = 2 there are 6 such words: aa, bb, cc, dd, cd and dc.)
Armend Sh. Shabani, University of Prishtina

Solution 1. Let N = {1, 2, . . . , n}. Consider a word w that satis�es the conditions and let
A,B,C,D ⊂ N be the sets of positions of letters a, b, c and d in w, respectively. By the
de�nition of the words we have AtB tC tD = N . The sets A and B are constrained to have
even sizes.

In order to construct all suitable words w, choose the set S = A∪B �rst; by the conditions,
|S| = |A| + |B| must be even. It is well-known that an n-element set (with n ≥ 1) has 2n−1

even subsets, so there are 2n−1 possibilities for S.
If S = ∅ then we can choose C ⊂ N arbitrarily, and then the set D = S \ C is determined

D uniquely. Since N has 2n subsets, we have 2n options for set C and therefore 2n suitable
words w with S = ∅.

Otherwise, if k = |S| > 0, we have to choose an arbitrary subset C of N \ S and an even
subset A of S; then D = (N \ S) \ C and B = S \ A are determined and |B| = |S| − |A| will
automatically be even. We have 2n−k choices for C and 2k−1 independent choices for A; so for
each nonempty even S we have 2n−k · 2k−1 = 2n−1 suitable words.

The number of nonempty even sets S is 2n−1−1, so in total, the number of words satisfying
the conditions is

1 · 2n + (2n−1 − 1) · 2n−1 = 4n−1 + 2n−1.

Solution 2. Let an denote the number of words of length n over A = {a, b, c, d} such
that a and b appear even number of times. Further, we de�ne the following sequences for the
number of words of length n, all over A.

• bn - the number of words with an odd number of a's and even number of b's

• cn - the number of words with even number of a's and an odd number of b's

• dn - the number of words with an odd number of a's and an odd number of b's

We will call them A-words, B-words, C-words and D-words, respectively.
It is clear that a1 = 2 and that

an + bn + cn + dn = 4n.

First, we �nd a recurrence relation for an. If an A-word of length n begins with c or d, it can
be followed by any A-word of length n − 1, contributing with 2an−1. If an A-word of length
n begins with a, it can be followed by any word of length n− 1 that contains an odd number
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of a's and even number of b's, thus contributing with bn−1. If an A-word of length n begins
with b, it can be followed by any word of length n − 1 that contains even number of a's and
an odd number of b's, thus contributing with cn−1. Therefore we have the following recurrence
relation:

an = 2an−1 + bn−1 + cn−1. (1)

Next, we �nd a recurrence relation for bn.
If a B-word of length n begins with c or d, it can be followed by any B-word of length n − 1,
contributing with 2bn−1. If a B-word of length n begins with a, it can be followed by any word of
length n−1 that contains even number of a's and even number of b's, contributing with an−1. If a
B-word of length n begins with b, it can be followed by any word of length n−1 that contains an
odd number of a's and an odd number of b's, contributing with dn−1 = 4n−1−an−1−bn−1−cn−1.
Therefore we have the following recurrence relation:

bn = bn−1 + 4n−1 − cn−1. (2)

Now observe that bk = ck for all k, since simultaneously replacing a's to b's and vice versa
we get a C-word from a B-word. Therefore (2) yields bn = 4n−1. Now (1) yields

an = 2 · an−1 + 2 · 4n−2.

Solving the last recurrence relation (for example, diving by 2n we get xn := an2−n satis�es
xn − xn−1 = 2n−3, and it remains to sum up consecutive powers of 2) we get

an = 2n−1 + 4n−1.

Solution 3. Consider the sum

(a+ b+ c+ d)n + (−a− b+ c+ d)n + (−a+ b+ c+ d)n + (a− b+ c+ d)n

4
. (∗)

Expanding the parentheses as

(a+ b+ c+ d)n = (a+ b+ c+ d)(a+ b+ c+ d) . . . (a+ b+ c+ d),

we get a sum of products x1 . . . xn, xi ∈ {a, b, c, d}, naturally corresponding to the words of
length n over the alphabet {a, b, c, d}. Consider the other terms in the numerator similarly.

If a word x1 . . . xn contains A,B,C,D letters a,b,c and d respectively, we get aAbBcCdD

with the coe�cient

1 + (−1)A+B + (−1)A + (−1)B

4
=

(1 + (−1)A)(1 + (−1)B)

4
=

{
1, if A andB are even

0, otherwise.

Hence, by substituting a = b = c = d = 1 in (∗) we get the answer (4n + 2n+1)/4 = 4n−1 + 2n−1.
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Problem 2. Let A and B be n× n real matrices such that

rk(AB −BA+ I) = 1

where I is the n× n identity matrix.
Prove that

trace(ABAB)− trace(A2B2) =
1

2
n(n− 1).

(rk(M) denotes the rank of matrix M , i.e., the maximum number of linearly independent
columns in M . trace(M) denotes the trace of M , that is the sum of diagonal elements in M .)

Rustam Turdibaev, V. I. Romanovskiy Institute of Mathematics

Solution. Let X = AB −BA. The �rst important observation is that

trace(X2) = trace(ABAB− ABBA− BAAB + BABA) = 2trace(ABAB)− 2trace(A2B2)

using that the trace is cyclic. So we need to prove that trace(X2) = n(n− 1).
By assumption, X + I has rank one, so we can write X + I = vtw for two vectors v, w. So

X2 = (vtw − I)2 = I − 2vtw + vtwvtw = I + (wvt − 2)vtw.

Now by de�nition of X we have trace(X) = 0 and hence wvt = trace(wvt) = trace(vtw) = n so
that indeed

trace(X2) = n + (n− 2)n = n(n− 1).

An alternative way to use the rank one condition is via eigenvalues: Since X + I has rank
one, it has eigenvalue 0 with multiplicity n−1. So X has eigenvalue −1 with multiplicity n−1.
Since trace(X) = 0 the remaining eigenvalue of X must be n− 1. Hence

trace(X2) = (n− 1)2 + (n− 1) · 12 = n(n− 1).
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Problem 3. Let d ≥ 2 be an integer. Prove that there exists a constant C(d) such that the
following holds: For any convex polytope K ⊂ Rd, which is symmetric about the origin, and
any ε ∈ (0, 1), there exists a convex polytope L ⊂ Rd with at most C(d)ε1−d vertices such that

(1− ε)K ⊆ L ⊆ K.

(For a real α, a set T ⊂ Rd with nonempty interior is a convex polytope with at most α vertices, if
T is a convex hull of a set X ⊂ Rd of at most α points, i.e., T = {

∑
x∈X txx | tx ≥ 0,

∑
x∈X tx =

1}. For a real λ, put λK = {λx | x ∈ K}. A set T ⊂ Rd is symmetric about the origin if
(−1)T = T .)

Fedor Petrov, St. Petersburg State University

Solution [in elementary terms] Let {p1, . . . , pm} be an inclusion-maximal collection of points
on the boundary ∂K of K such that the homothetic copies Ki := pi+

ε
2
K have disjoint interiors.

We claim that the convex hull L := conv{p1, . . . , pm} satis�es all the conditions.
First, note that by convexity of K we have aK+ bK = (a+ b)K for a, b > 0. It follows that

Ki ⊂ (1 + ε
2
)K. On the other hand, if k ∈ K, a > 0 and and ak ∈ Ki, then

pi ∈ ak −
ε

2
K = ak +

ε

2
K ⊂ (a+

ε

2
)K,

and since pi is a boundary point of K, we get a + ε
2
> 1, a > 1 − ε

2
. It means that all Ki lie

between (1− ε
2
)K and (1 + ε

2
)K. Since their interiors are disjoint, by the volume counting we

obtain

m
(ε

2

)d
6
(

1 +
ε

2

)d
−
(

1− ε

2

)d
6 (3/2)dε

(since F (ε) = (1 + ε
2
)d− (1− ε

2
)d is a polynomial in ε without constant term with non-negative

coe�cients which sum up to (3/2)d − (1/2)d), therefore m 6 3dε1−d.
It is clear that L ⊆ K, so it remains to prove that (1 − ε)K ⊆ L. Assume the contrary:

there exists a point p ∈ (1 − ε)K \ L. Separate p from L by a hyperplane: Choose a linear
functional ` such that `(p) > maxx∈L `(x) = maxi `(pi). Choose x ∈ K such that `(x) =: a is
maximal possible. Note that by our construction x + ε

2
K has a common point with some Ki:

there exists a point z ∈ (x+ ε
2
K) ∩ (pi + ε

2
K). We have

`(pi) +
ε

2
a > `(z) > `(x)− ε

2
a,

and therefore `(pi) > a(1− ε). Since p ∈ (1− ε)K, we obtain `(p) 6 a(1− ε). A contradiction.
Solution [in the language of Banach spaces] Equip Rd with the norm ‖ · ‖, whose unit

ball is K, call this Banach space V . Choose an inclusion maximal set X ⊂ ∂K whose pairwise
distances are ≥ ε. Put L = convX.

The inclusion L ⊆ K follows from the convexity ofK. If the inclusion (1−ε)K ⊆ L fails then
the Hahn�Banach theorem provides a unit linear functional λ ∈ V ∗ such that max{λ(L)} =
max{λX} ≤ 1 − ε. Then the point x ∈ K, where the maximum max{λ(K)} = 1 is attained
(thanks to the �nite dimension and compactness) is in ∂K and, as λ witnesses, at distance ≥ ε
from all other points of L and X, contradicting the inclusion-maximality of X.

The upper bound for the cardinality |X| is obtained by noting that the ε/2 balls centered
at the points of X are pairwise disjoint and lie in the di�erence of balls (1+ε/2)K \ (1−ε/2)K,
whose volume is

(
(1 + ε/2)d − (1− ε/2)d

)
volK, the volume of each of the small balls being

εd/2dvolK. Hence

|X| ≤ (2 + ε)d − (2− ε)d

εd
= O(ε1−d).
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Problem 4. A polynomial p with real coe�cients satis�es the equation p(x+ 1)− p(x) = x100

for all x ∈ R. Prove that p(1− t) > p(t) for 0 6 t 6 1/2.
Daniil Klyuev, St. Petersburg State University

Solution 1. Denote h(z) = p(1 − z̄) − p(z) for complex z. For t ∈ R we have h(it) =
p(1 + it)− p(it) = t100, h(1/2 + it) = 0.

If p(z) = cnz
n + . . .+ c0, cn 6= 0, we have

h(a+ it) = p((1− a) + it)− p(a+ it) = (1− 2a)
(
ncni

n−1tn−1 +Q(t, a)
)

for some polynomial Q having degree at most n−2 with respect to the variable t. Substituting
a = 0 we get n = 101, cn = 1/101.

Next, for large |t| we see that <(h(a+ it)) > 0 for 0 6 a < 1/2.
Therefore by Maximum Principle for the harmonic function <h and the rectangle [0, 1/2]×

[−N,N ] for large enough N we conclude that <h is non-negative in this rectangle, in particular
on [0, 1/2], as we need.

Solution 2. Let p(x) =
∑m

j=0 ajx
j. Then

p(x+1)−p(x) =
m∑
j=0

aj
(
(x+ 1)j − xj

)
= a1+a2(2x+1)+· · ·+am

(
mxm−1 +

(
m

2

)
xm−2 + · · ·+ 1

)
.

This implies that m = 101, mam = 1 so a101 = 1
101

, (m − 1)am−1 + am
(
m
2

)
= 0 so a100 = −1

2

etc. For j > 1 aj is uniquely de�ned, a0 may be chosen arbitrarily.
The equality p2n(1

2
) = 0 holds because 0 = p2n(1

2
) + p2n(1− 1

2
) = 2p2n(1

2
). Let n > 1 be an

integer and let pn be a polynomial such that pn(x+ 1)− pn(x) = xn for all x and pn(0) = 0 =
pn(1). The above considerations prove the uniqueness of pn. We have p1(x) = 1

2
x2 − 1

2
x. Also

p′n(x+ 1)− p′n(x) = nxn−1 = n (pn−1(x+ 1)− pn−1(x)). Therefore p′n(x) = npn−1(x) + cn−1 for
a properly chosen constant cn−1. We shall prove that

(1) p2n−1(x)−p2n−1(1−x) = 0, p2n(x)+p2n(1−x) = 0, c2n = 0, p′′2n(x) = 2n(2n−1)p2n−2(x)

for n = 1, 2, . . . and for all x. Simple computation shows that p1(x)− p1(1− x) = 0. We have
(p2(x) + p2(1− x))′ = 2p1(x) + c1 − (2p1(1− x) + c1) = 0 so the map x 7→ p2(x) + p2(1− x) is
constant thus p2(x) + p2(1−x) = p2(0) + p2(1− 0) = 0. If the �rst two equalities hold for some
n then (p2n+1(x)− p2n+1(1− x))′ = (2n + 1)p2n(x) + c2n + (p2n(1− x) + c2n) = 2c2n so there
exists b ∈ R such that p2n+1(x)− p2n+1(1−x) = 2c2nx+ b for all x. p2n+1(0)− p2n+1(1− 0) = 0
and p2n+1(1)−p2n+1(1−1) = 0 so 2c2n = 0 = b. This proves that p2n+1(x)−p2n+1(1−x) = 0 for
all x. In a similar way we shall prove the second equality: (p2n+2(x) + p2n+2(1− x))′ = (2n +
2)p′2n+1(x)+ c2n+1− (2n+2) (p2n+1(1− x) + c2n+1) = 0 so the map x 7→ p2n+2(x)+p2n+2(1−x)
is constant hence p2n+2(x) + p2n+2(1 − x) = p2n+2(0) + p2n+2(1 − 0) = 0 for all x. Now
p′′2n+2(x) = ((2n+ 2)p2n+1(x) + c2n+1)

′ = (2n + 2)p′2n+1(x) = (2n + 2)((2n + 1)p2n(x) + c2n) =
(2n+2)(2n+1)p2n(x). Since p′2(x) = 2p1(x)+ c1 = x2−x+ c1 we obtain p

′′
2(x) = 2x−1 < 0 for

x < 1
2
.The function p2 is strictly concave on [0, 1

2
] and p2(0) = 0 = p2(

1
2
). Therefore p2(x) > 0

for x ∈ (0, 1
2
). This together with the equality p4(x) = 12p2(x) implies that p4 is strictly convex

on [0, 1
2
] so in view of p4(0) = 0 = p4(

1
2
) we conclude that p4(x) < 0 for x ∈ (0, 1

2
). Easy

induction shows that for x ∈ (0, 1
2
) one has p2n(x) > 0 for an odd n and p2n(x) < 0 for an even

n. If t ∈ (0, 1
2
) then by (1) we get p100(1− t)− p100(t) = −2p100(t) > 0 as required.
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