
IMC2019, Blagoevgrad, Bulgaria

Day 2, July 31, 2019

Problem 6. Let f, g : R −→ R be continuous functions such that g is di�erentiable. Assume
that

(
f(0) − g′(0)

)(
g′(1) − f(1)

)
> 0. Show that there exists a point c ∈ (0, 1) such that

f(c) = g′(c).
Proposed by Fereshteh Malek, K. N. Toosi University of Technology

Solution. De�ne F (x) =
∫ x

0
f(t)dt and let h(x) = F (x) − g(x). By the continuouity of f we

have F ′ = f , so h′ = f − g′.
The assumption can be re-written as h′(0)

(
− h′(1)

)
> 0, so h′(0) and h′(1) have opposite

signs. Then, by the Mean Value Theorem For Derivatives (Darboux property of derivatives) it
follows that there is a point c between 0 and 1 where h′(c) = 0, so f(c) = g′(c).

Problem 7.

Let C = {4, 6, 8, 9, 10, . . .} be the set of composite positive integers. For each n ∈ C let
an be the smallest positive integer k such that k! is divisible by n. Determine whether the
following series converges: ∑

n∈C

(an
n

)n
. (1)

Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan

Solution. The series (1) converges. We will show that an
n
≤ 2

3
for n > 4; then the geometric

series
∑(

2
3

)n
majorizes (1).

Case 1: n has at least two distinct prime divisors. Then n can be factored as n = qr with
some co-prime positive integers q, r ≥ 2; without loss of generality we can assume q > r. Notice
that q

∣∣ q! and r ∣∣ r! ∣∣ q!, so n = qr
∣∣ q!; this shows an ≤ q and therefore

an
n
≤ q

n
=

1

r
≤ 1

2
.

Case 2: n is the square of a prime, n = p2 with some prime p ≥ 3. From p2
∣∣ p · 2p ∣∣ (2p)! we

obtain an = 2p, so
an
n

=
2p

p2
=

2

p
≤ 2

3
.

Case 3: n is a prime power, n = pk with some prime p and k ≥ 3. Notice that n =
pk
∣∣ p · p2 · · · pk−1, so an ≤ pk−1 and therefore

an
n
≤ pk−1

pk
=

1

p
≤ 1

2
.
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Problem 8. Let x1, . . . , xn be real numbers. For any set I ⊂ {1, 2, . . . , n} let s(I) =
∑
i∈I
xi.

Assume that the function I 7→ s(I) takes on at least 1.8n values where I runs over all 2n subsets
of {1, 2, . . . , n}. Prove that the number of sets I ⊂ {1, 2, . . . , n} for which s(I) = 2019 does not
exceed 1.7n.

Proposed by Fedor Part and Fedor Petrov, St. Petersburg State University

Solution. Choose disctint sets I1, . . . , IA ⊂ {1, 2, . . . , n} where A ≥ 1.8n, and let J1, . . . , JB ⊂
{1, 2, . . . , n} be all sets so that S(Ji) = 2019; for the sake of contradiction, assume that
B ≥ 1.7n.

Every set I ⊂ {1, 2, . . . , n} can be identi�ed with a 0 − 1 vector of length n: the kth
coordinate in the vector is 1 if k ∈ I. Then s(I) = 〈I,X〉, where X = (x1, . . . , xn) and 〈·, ·〉
stands for the usual scalar product.

For all ordered pairs (a, b) ∈ {1, . . . , A}×{1, . . . , B} consider the vector Ia−Jb ∈ {−1, 0, 1}n.
By the pigeonhole principle, since AB ≥ (1.8 · 1.7)n > 3n, there are two pairs (a, b) and (c, d)
such that Ia − Jb = Ic − Jd. Multiplying this by X we get s(Ia) − 2019 = s(Ic) − 2019; that
implies a = c. But then Jb = Jd, that is, b = d, and our pairs coincide. Contradiction.

Problem 9. Determine all positive integers n for which there exist n×n real invertible matrices
A and B that satisfy AB −BA = B2A.

Proposed by Karen Keryan, Yerevan State University & American University of Armenia, Yerevan

Solution. We prove that there exist such matrices A and B inf and only if n is even.

I. Assume that n is odd and some invertible n× n matrices A,B satisfy AB −BA = B2A.
Hence B = A−1(B2 + B)A, so the matrices B and B2 + B are similar and therefore have the
same eigenvalues. Since n is odd, the matrix B has a real eigenvalue, denote it by λ1. Therefore
λ2 := λ21 + λ1 is an eigenvalue of B2 + B, hence an eigenvalue of B. Similarly, λ3 := λ22 + λ2
is an eigenvalue of B2 + B, hence an eigenvalue of B. Repeating this process and taking into
account that the number of eigenvalues of B is �nite we will get there exist numbers k ≤ l so
that λl+1 = λk. Hence

λk+1 = λ2k + λk

λk+2 = λ2k+1 + λk+1

. . . . . . . . .

λl = λ2l−1 + λl−1

λk = λ2l + λl.

Adding this equations we get λ2k +λ2k+1 + . . .+λ2l = 0. Taking into account that all λi's are real
(as λ1 is real), we have λk = . . . = λl = 0, which implies that B is not invertible, contradiction.

II. Now we construct such matrices A,B for even n. Let A2 =

[
0 1
1 0

]
and B2 =

[
−1 1
−1 −1

]
.

It is easy to check that the matrices A2, B2 are invertible and satisfy the condition. For n = 2k
the n× n block matrices

A =


A2 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . A2

 , B =


B2 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . B2


are also invertible and satisfy the condition.
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Problem 10. 2019 points are chosen at random, independently, and distributed uniformly in
the unit disc {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Let C be the convex hull of the chosen points. Which
probability is larger: that C is a polygon with three vertices, or a polygon with four vertices?

Proposed by Fedor Petrov, St. Petersburg State University

Solution. We will show that the quadrilateral has larger probability.
Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Denote the random points by X1, . . . , X2019 and let

p = P
(
C is a triangle with vertices X1, X2, X3

)
,

q = P
(
C is a convex quadrilateral with vertices X1, X2, X3, X4

)
.

By symmetry we have P
(
C is a triangle

)
=
(
2019
3

)
p, P

(
C is a quadrilateral

)
=
(
2019
4

)
q and we

need to prove that
(
2019
4

)
q >

(
2019
3

)
p, or equivalently p < 2016

4
q = 504q.

Note that p is the average over X1, X2, X3 of the following expression:

u(X1, X2, X3) = P
(
X4 ∈ 4X1X2X3

)
· P
(
X5, X6, . . . , X2019 ∈ 4X1X2X3

)
,

and q is not less than the average over X1, X2, X3 of

v(X1, X2, X3) = P
(
X1, X2, X3, X4 form a convex quad.

)
· P
(
X5, X6, . . . , X2019 ∈ 4X1X2X3)

)
.

Thus it su�ces to prove that u(X1, X2, X3) ≤ 500v(X1, X2, X3) for all X1, X2, X3. It reads as
area(4X1X2X3) ≤ 500area(Ω), where Ω = {Y : X1, X2, X3, Y form a convex quadrilateral}.

Assume the contrary, i.e., area(4X1X2X3) > 500area(Ω).
Let the lines X1X2, X1X3, X2X3 meet the boundary of D at A1, A2, A3, B1, B2, B3; these

lines divide D into 7 regions as shown in the picture; Ω = D4 ∪ D5 ∪ D6.

By our indirect assumption,

area(D4) + area(D5) + area(D6) = area(Ω) <
1

500
area(D0) <

1

500
area(D) =

π

500
.

From 4X1X3B3 ⊂ Ω we get X3B3/X3X2 = area(4X1X3B3)/area(4X1X2X3) < 1/500, so
X3B3 <

1
500
X2X3 <

1
250

. Similarly, the lengths segments A1X1, B1X1, A2X2, B2X2, A3X2 are
less than 1

250
.

The regions D1,D2,D3 can be covered by disks with radius 1
250

, so

area(D1) + area(D2) + area(D3) < 3 · π

2502
.

Finally, it is well-known that the area of any triangle inside the unit disk is at most 3
√
3

4
, so

area(D0) ≤
3
√

3

4
.
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But then
6∑

i=0

area(Di) <
3
√

3

4
+ 3 · π

2502
+

π

500
< area(D),

contradiction.
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