
IMC2019, Blagoevgrad, Bulgaria

Day 1, July 30, 2019

Problem 1. Evaluate the product
∞∏
n=3

(n3 + 3n)2

n6 − 64
.

Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan and
Karen Keryan, Yerevan State University and American University of Armenia, Yerevan

Hint: Telescoping product.

Solution. Let

an =
(n3 + 3n)2

n6 − 64
.

Notice that

an =
(n3 + 3n)2

(n3 − 8)(n3 + 8)
=

n2(n2 + 3)2

(n− 2)(n2 + 2n+ 4) · (n+ 2)(n2 − 2n+ 4)

=
n

n− 2
· n

n+ 2
· n2 + 3

(n− 1)2 + 3
· n2 + 3

(n+ 1)2 + 3
.

Hence, for N ≥ 3 we have

N∏
n=3

an =

(
N∏

n=3

n

n− 2

)(
N∏

n=3

n

n+ 2

)(
N∏

n=3

n2 + 3

(n− 1)2 + 3

)(
N∏

n=3

n2 + 3

(n+ 1)2 + 3

)

=
N(N − 1)

1 · 2
· 3 · 4
(N + 1)(N + 2)

· N
2 + 3

22 + 3
· 32 + 3

(N + 1)2 + 3

=
72

7
· N(N − 1)(N2 + 3)

(N + 1)(N + 2)
(
(N + 1)2 + 3

)
=

72

7
·

(1− 1
N
)(1 + 3

N2 )

(1 + 1
N
)(1 + 2

N
)
(
(1 + 1

N
)2 + 3

N2

) ,
so

∞∏
n=3

an = lim
N→∞

N∏
n=3

an = lim
N→∞

(
72

7
·

(1− 1
N
)(1 + 3

N2 )

(1 + 1
N
)(1 + 2

N
)
(
(1 + 1

N
)2 + 3

N2

)) =
72

7
.

Problem 2. A four-digit number Y EAR is called very good if the system

Y x+ Ey + Az +Rw = Y

Rx+ Y y + Ez + Aw = E

Ax+Ry + Y z + Ew = A

Ex+ Ay +Rz + Y w = R

of linear equations in the variables x, y, z and w has at least two solutions. Find all very good
YEARs in the 21st century.

(The 21st century starts in 2001 and ends in 2100.)
Proposed by Tomá² Bárta, Charles University, Prague
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Hint: If the solution of the system is not unique then det


Y E A R
R Y E A
A R Y E
E A R Y

 = 0.

Solution. Let us apply row transformations to the augmented matrix of the system to �nd its
rank. First we add the second, third and fourth row to the �rst one and divide by Y +E+A+R
to get 

1 1 1 1 1
R Y E A E
A R Y E A
E A R Y R

 ∼

1 1 1 1 1
0 Y −R E −R A−R E −R
0 R− A Y − A E − A 0
0 A− E R− E Y − E R− E



∼


1 1 1 1 1
0 Y −R E −R A−R E −R
0 R− A Y − A E − A 0
0 A− E + Y −R 0 Y − E + A−R 0


Let us �rst omit the last column and look at the remaining 4 × 4 matrix. If E 6= R, the �rst
and second rows are linearly independent, so the rank of the matrix is at least 2 and rank of
the augmented 4× 5 matrix cannot be bigger than rank of the 4× 4 matrix due to the zeros in
the last column.

IF E = R, then we have three zeros in the last column, so rank of the 4×5 matrix cannot be
bigger than rank of the 4× 4 matrix. So, the original system has always at least one solution.

It follows that the system has more than one solution if and only if the 4× 4 matrix (with
the last column omitted) is singular. Let us �rst assume that E 6= R. We apply one more
transform to get

∼


1 1 1 1
0 Y −R E −R A−R
0 (R− A)(E −R)− (Y −R)(Y − A) 0 (E − A)(E −R)− (A−R)(Y − A)
0 A− E + Y −R 0 Y − E + A−R


Obviously, this matrix is singular if and only if A − E + Y − R = 0 or the two expressions in
the third row are equal, i.e.

RE −R2 −AE +AR− Y 2 +RY +AY −AR = E2 −AE −ER+AR−AY +RY +A2 −AR

0 = (E −R)2 + (A− Y )2,

but this is impossible if E 6= R. If E = R, we have

∼


1 1 1 1
0 Y −R 0 A−R
0 R− A Y − A R− A
0 A+ Y − 2R 0 Y + A− 2R

 ∼

1 1 1 1
0 Y −R 0 A−R
0 R− A Y − A R− A
0 A−R 0 Y −R

 .

If A = Y , this matrix is singular. If A 6= Y , the matrix is regular if and only if (Y − R)2 6=
(A− R)2 and since Y 6= A, it means that Y − R 6= −(A− R), i.e. Y + A 6= 2R. We conclude
that YEAR is very good if and only if

1. E 6= R and A+ Y = E +R, or
2. E = R and Y = A, or
3. E = R, A 6= Y and Y + A = 2R.
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We can see that if Y = 2, E = 0, then the very good years satisfying 1 are A+2 = R 6= 0, i.e.
2002, 2013, 2024, 2035, 2046, 2057, 2068, 2079, condition 2 is satis�ed for 2020 and condition 3
never satis�ed.

Problem 3. Let f : (−1, 1)→ R be a twice di�erentiable function such that

2f ′(x) + xf ′′(x) ≥ 1 for x ∈ (−1, 1).

Prove that ∫ 1

−1
xf(x) dx ≥ 1

3
.

Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan and
Karim Rakhimov, Scuola Normale Superiore and National University of Uzbekistan

Hint: 2f ′(x) + xf ′′(x) is the second derivative of a certain function.

Solution. Let

g(x) = xf(x)− x2

2
.

Notice that
g′′(x) = 2f ′(x) + xf ′′(x)− 1 ≥ 0,

so g is convex. Estimate g by its tangent at 0: let g′(0) = a, then

g(x) = g(0) + g′(0)x = ax

and therefore ∫ 1

−1
xf(x) dx =

∫ 1

−1

(
g(x) +

x2

2

)
dx ≥

∫ 1

−1

(
ax+

x2

2

)
dx =

1

3
.

Problem 4. De�ne the sequence a0, a1, . . . of numbers by the following recurrence:

a0 = 1, a1 = 2, (n+ 3)an+2 = (6n+ 9)an+1 − nan for n ≥ 0.

Prove that all terms of this sequence are integers.
Proposed by Khakimboy Egamberganov, ICTP, Italy

Hint: Determine the generating function
∑
anx

n.

Solution. Take the generating function of this sequence

f(x) =
∞∑
n=0

anx
n.

It is easy to see that the sequence is increasing and

an+1

an
=

(6n+ 3)an − (n− 1)an−1
(n+ 2)an

<
6n+ 3

n+ 2
⇒ lim sup

n→∞

an+1

an
≤ 6.

So the generating function converges in some neighbourhood of 0. Then, we have

f(x) = 1+2x+
∞∑
n=2

anx
n = 1+2x+

∞∑
n=0

an+2x
n+2 = 1+2x+

∞∑
n=0

6n+ 9

n+ 3
an+1x

n+2−
∞∑
n=0

n

n+ 3
anx

n+2.
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Let f1(x) =
∞∑
n=0

6n+ 9

n+ 3
an+1x

n+2 and f2(x) =
∞∑
n=0

n

n+ 3
anx

n+2. Then

(xf1(x))
′ =

∞∑
n=0

(6n+9)an+1x
n+2 = 6x2

∞∑
n=0

(n+1)an+1x
n+3x

∞∑
n=0

an+1x
n+1 = 6x2f ′(x)+3x(f(x)−1)

and

(xf2(x))
′ =

∞∑
n=0

nanx
n+2 = x2

∞∑
n=0

(n+ 1)anx
n − x2

∞∑
n=0

anx
n = x2(xf(x))′ − x2f(x) = x3f ′(x).

Using this relations, we arrive at the following di�erential equation for f :

(xf(x))′ = 1 + 4x+ (xf1(x))
′ − (xf2(x))

′ = 1 + x+ (6x2 − x3)f ′(x) + 3xf(x)

or, equivalently,
(x3 − 6x2 + x)f ′(x) + (1− 3x)f(x)− 1− x = 0.

So, we need solve this di�erential equation in some su�ciently smaller neighbourhood of 0. We
know that f(0) = 1 and we need a neighbourhood of 0 such that x2 − 6x+ 1 > 0. Then

f ′(x) +
1− 3x

x(x2 − 6x+ 1)
f(x) =

1 + x

x(x2 − 6x+ 1)

for x 6= 0. So the integral multiplier is µ(x) =
x√

x2 − 6x+ 1
and

(f(x)µ(x))′ =
x+ x2

(x2 − 6x+ 1)
3
2

,

so

f(x) =

(
1− x

2
√
x2 − 6x+ 1

− 1

2

) √
x2 − 6x+ 1

x
=

1− x−
√
x2 − 6x+ 1

2x
.

We found the generating function of (an) in some neighbourhood of 0, which x2 − 6x+ 1 > 0.

So our series uniformly converges to f(x) =
1− x−

√
x2 − 6x+ 1

2x
in |x| < 3− 2

√
2.

Instead of computing the coe�cients of the Taylor series of f(x) directly, we will �nd
another recurrence relation for (an). It is easy to see that f(x) satis�es the quadratic equation
xt2 − (1− x)t+ 1 = 0. So

xf(x)2 − (1− x)f(x) + 1 = 0.

Then

x

(
∞∑
n=0

anx
n

)2

+1 =
∞∑
n=0

anx
n−

∞∑
n=0

anx
n+1 ⇒

∞∑
n=0

(
n∑

k=0

akan−k

)
xn+1 =

∞∑
n=0

(an+1−an)xn+1

and from here, we get

an+1 = an +
n∑

k=0

akan−k.

If a0, a1, ..., an be integers, then an+1 is also integer. We know that a0 = 1, a1 = 2 are integer
numbers, so all terms of the sequence (an) are integers by induction.

Problem 5. Determine whether there exist an odd positive integer n and n × n matrices A
and B with integer entries, that satisfy the following conditions:

(1) det(B) = 1;
(2) AB = BA;
(3) A4 + 4A2B2 + 16B4 = 2019I.

(Here I denotes the n× n identity matrix.)
Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan
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Hint: Consider the determinants modulo 4.

Remark. The proposed solution was more complicated and involved; during the contest it
turned out that a sign�cantly simpli�ed solution exists � which we now provide below.

Solution 1. We show that there are no such matrices.
Notice that A4 + 4A2B2 + 16B4 can factorized as

A4 + 4A2B2 + 16B4 = (A2 + 2AB + 4B2)(A2 − 2AB + 4B2).

Let C = A2 + 2AB + 4B2 and D = A2 − 2AB + 4B2 be the two factors above. Then

detC · detD = det(CD) = det(A4 + 4A2B2 + 16B4) = det(2019I) = 2019n.

The matrices C,D have integer entries, so their determinants are integers. Moreover, from
C ≡ D (mod 4) we can see that

detC ≡ detD (mod 4).

This implies that detC ·detD ≡ (detC)2 (mod 4), but this is a contradiction because 2019n ≡ 3
(mod 4) is a quadratic nonresidue modulo 4.

Solution 2. Notice that

A4 ≡ A4 + 4A2B2 + 16B4 = 2019I mod 4

so
(detA)4 = detA4 ≡ det(2109I) = 2019n (mod 4).

But 2019n ≡ 3 is a quadratic nonresidue modulo 4, contradiction.
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