
IMC2018, Blagoevgrad, Bulgaria

Day 1, July 24, 2018

Problem 1. Let (an)∞n=1 and (bn)∞n=1 be two sequences of positive numbers. Show that the
following statements are equivalent:

(1) There is a sequence (cn)∞n=1 of positive numbers such that
∞∑
n=1

an
cn

and
∞∑
n=1

cn
bn

both converge;

(2)
∞∑
n=1

√
an
bn

converges.

(Proposed by Tomá² Bárta, Charles University, Prague)

Solution. Note that the sum of a series with positive terms can be either �nite or +∞, so for
such a series, "converges" is equivalent to "is �nite".

Proof for (1) =⇒ (2): By the AM-GM inequality,√
an
bn

=

√
an
cn
· cn
bn
≤ 1

2

(
an
cn

+
cn
bn

)
,

so
∞∑
n=1

√
an
bn
≤ 1

2

∞∑
n=1

an
cn

+
1

2

∞∑
n=1

cn
bn
< +∞.

Hence,
∞∑
n=1

√
an
bn

is �nite and therefore convergent.

Proof for (2) =⇒ (1): Choose cn =
√
anbn. Then

an
cn

=
cn
bn

=

√
an
bn
.

By the condition
∞∑
n=1

√
an
bn

converges, therefore
∞∑
n=1

an
cn

and
∞∑
n=1

cn
bn

converge, too.

Problem 2. Does there exist a �eld such that its multiplicative group is isomorphic to its
additive group?

(Proposed by Alexandre Chapovalov, New York University, Abu Dhabi)

Solution. There exist no such �eld.
Suppose that F is such a �eld and g : F ∗ → F+ is a group isomorphism. Then g(1) = 0.
Let a = g(−1). Then 2a = 2 · g(−1) = g((−1)2) = g(1) = 0; so either a = 0 or char F = 2.

If a = 0 then −1 = g−1(a) = g−1(0) = 1; we have char F = 2 in any case.
For every x ∈ F , we have g(x2) = 2g(x) = 0 = g(1), so x2 = 1. But this equation has only

one or two solutions. Hence F is the 2-element �eld; but its additive and multiplicative groups
have di�erent numbers of elements and are not isomorphic.
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Problem 3. Determine all rational numbers a for which the matrix
a −a −1 0
a −a 0 −1
1 0 a −a
0 1 a −a


is the square of a matrix with all rational entries.

(Proposed by Daniël Kroes, University of California, San Diego)

Solution. We will show that the only such number is a = 0.

Let A =


a −a −1 0
a −a 0 −1
1 0 a −a
0 1 a −a

 and suppose that A = B2. It is easy to compute the charac-

teristic polynomial of A, which is

pA(x) = det(A− xI) = (x2 + 1)2.

By the Cayley-Hamilton theorem we have pA(B2) = pA(A) = 0.
Let µB(x) be the minimal polynomial of B. The minimal polynomial divides all polynomials

that vanish at B; in particular µB(x) must be a divisor of the polynomial pA(x2) = (x4 + 1)2.
The polynomial µB(x) has rational coe�cients and degree at most 4. On the other hand, the
polynomial x4 + 1, being the 8th cyclotomic polynomial, is irreducible in Q[x]. Hence the only
possibility for µB is µB(x) = x4 + 1. Therefore,

A2 + I = µB(B) = 0. (1)

Since we have

A2 + I =


0 0 −2a 2a
0 0 −2a 2a
2a −2a 0 0
2a −2a 0 0

 ,

the relation (1) forces a = 0.

In case a = 0 we have

A =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0


2

,

hence a = 0 satis�es the condition.

Problem 4. Find all di�erentiable functions f : (0,∞)→ R such that

f(b)− f(a) = (b− a)f ′
(√

ab
)

for all a, b > 0. (2)

(Proposed by Orif Ibrogimov, National University of Uzbekistan)

Solution. First we show that f is in�nitely many times di�erentiable. By substituting a = 1
2
t

and b = 2t in (2),

f ′(t) =
f(2t)− f(1

2
t)

3
2
t

. (3)
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Inductively, if f is k times di�erentiable then the right-hand side of (3) is k times di�erentiable,
so the f ′(t) on the left-hand-side is k times di�erentiable as well; hence f is k + 1 times
di�erentiable.

Now substitute b = eht and a = e−ht in (2), di�erentiate three times with respect to h then
take limits with h→ 0:

f(eht)− f(e−ht)− (eht− e−ht)f(t) = 0(
∂

∂h

)3 (
f(eht)− f(e−ht)− (eht− e−ht)f(t)

)
= 0

e3ht3f ′′′(eht)+3e2ht2f ′′(eht)+ehtf ′(eht)+e−3ht3f ′′′(e−ht)+3e−2ht2f ′′(e−ht)+e−htf ′(e−ht)−
−(eht+ e−ht)f ′(t) = 0

2t3f ′′′(t) + 6t2f ′′(t) = 0

tf ′′′(t) + 3f ′′(t) = 0

(t f(t))′′′ = 0.

Consequently, tf(t) is an at most quadratic polynomial of t, and therefore

f(t) = C1t+
C2

t
+ C3 (4)

with some constants C1, C2 and C3.

It is easy to verify that all functions of the form (4) satisfy the equation (1).

Problem 5. Let p and q be prime numbers with p < q. Suppose that in a convex polygon
P1P2 . . . Ppq all angles are equal and the side lengths are distinct positive integers. Prove that

P1P2 + P2P3 + · · ·+ PkPk+1 ≥
k3 + k

2

holds for every integer k with 1 ≤ k ≤ p.
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Berlin)

Solution. Place the polygon in the complex plane counterclockwise, so that P2 − P1 is a
positive real number. Let ai = |Pi+2 − Pi+1|, which is an integer, and de�ne the polynomial

f(x) = apq−1x
pq−1 + · · ·+ a1x+ a0. Let ω = e

2πi
pq ; then Pi+1 − Pi = ai−1ω

i−1, so f(ω) = 0.

The minimal polynomial of ω over Q[x] is the cyclotomic polynomial Φpq(x) = (xpq−1)(x−1)
(xp−1)(xq−1) ,

so Φpq(x) divides f(x). At the same time, Φpq(x) is the greatest common divisor of s(x) =
xpq−1
xp−1 = Φq(x

p) and t(x) = xpq−1
xq−1 = Φp(x

q), so by Bézout's identity (for real polynomials), we
can write f(x) = s(x)u(x) + t(x)v(x), with some polynomials u(x), v(x). These polynomials
can be replaced by u∗(x) = u(x) + w(x)x

p−1
x−1 and v∗(x) = v(x) − w(x)x

q−1
x−1 , so without loss of

generality we may assume that deg u ≤ p− 1. Since deg a = pq − 1, this forces deg v ≤ q − 1.
Let u(x) = up−1x

p−1 + · · ·+ u1x+ u0 and v(x) = vq−1x
q−1 + · · ·+ v1x+ v0. Denote by (i, j)

the unique integer n ∈ {0, 1, . . . , pq−1} with n ≡ i (mod p) and n ≡ j (mod q). By the choice
of s and t, we have a(i,j) = ui + vj. Then

P1P2 + · · ·+ PkPk+1 =
k−1∑
i=0

a(i,i) =
k−1∑
i=0

ui + vi =
1

k

k−1∑
i=0

k−1∑
j=0

(ui + vj)

=
1

k

k−1∑
i=0

k−1∑
j=0

a(i,j)
(∗)
≥ 1

k

(
1 + 2 + · · ·+ k2

)
=
k3 + k

2

where (∗) uses the fact that the numbers (i, j) are pairwise di�erent.

3


