
IMC2017, Blagoevgrad, Bulgaria

Day 1, August 2, 2017

Problem 1. Determine all complex numbers λ for which there exist a positive integer n and
a real n× n matrix A such that A2 = AT and λ is an eigenvalue of A.

(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution. By taking squares,

A4 = (A2)2 = (AT )2 = (A2)T = (AT )T = A,

so
A4 − A = 0;

it follows that all eigenvalues of A are roots of the polynomial X4 −X.
The roots of X4−X = X(X3− 1) are 0, 1 and −1±

√
3i

2
. In order to verify that these values

are possible, consider the matrices

A0 =
(
0
)
, A1 =

(
1
)
, A2 =

(
−1

2

√
3
2

−
√
3
2
−1

2

)
, A4 =


0 0 0 0
0 1 0 0

0 0 −1
2

√
3
2

0 0 −
√
3
2
−1

2

 .

The numbers 0 and 1 are the eigenvalues of the 1 × 1 matrices A0 and A1, respectively. The
numbers −1±

√
3i

2
are the eigenvalues of A2; it is easy to check that

A2
2 =

(
−1

2
−
√
3
2√

3
2
−1

2

)
= AT

2 .

The matrix A4 establishes all the four possible eigenvalues in a single matrix.

Remark. The matrix A2 represents a rotation by 2π/3.

Problem 2. Let f : R → (0,∞) be a di�erentiable function, and suppose that there exists
a constant L > 0 such that ∣∣f ′(x)− f ′(y)∣∣ ≤ L

∣∣x− y∣∣
for all x, y. Prove that (

f ′(x)
)2
< 2Lf(x)

holds for all x.
(Proposed by Jan �ustek, University of Ostrava)
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Solution. Notice that f ′ satis�es the Lipschitz-property, so f ′ is continuous and therefore
locally integrable.

Consider an arbitrary x ∈ R and let d = f ′(x). We need to prove f(x) > d2

2L
.

If d = 0 then the statement is trivial.
If d > 0 then the condition provides f ′(x−t) ≥ d−Lt; this estimate is positive for 0 ≤ t < d

L
.

By integrating over that interval,

f(x) > f(x)− f(x− d
L
) =

∫ d
L

0

f ′
(
x− t

)
dt ≥

∫ d
L

0

(d− Lt)dt = d2

2L
.

If d < 0 then apply f ′(x+ t) ≤ d+ Lt = −|d|+ Lt and repeat the same argument as

f(x) > f(x)− f(x+ |d|
L
) =

∫ |d|
L

0

(
− f ′(x+ t)

)
dt ≥

∫ |d|
L

0

(|d| − Lt)dt = d2

2L
.

Problem 3. For any positive integer m, denote by P (m) the product of positive divisors of m
(e.g. P (6) = 36). For every positive integer n de�ne the sequence

a1(n) = n, ak+1(n) = P (ak(n)) (k = 1, 2, . . . , 2016).

Determine whether for every set S ⊆ {1, 2, . . . , 2017}, there exists a positive integer n such
that the following condition is satis�ed:

For every k with 1 ≤ k ≤ 2017, the number ak(n) is a perfect square if and only if k ∈ S.
(Proposed by Matko Ljulj , University of Zagreb)

Solution. We prove that the answer is yes; for every S ⊂ {1, 2, . . . , 2017} there exists a
suitable n. Specially, n can be a power of 2: n = 2w1 with some nonnegative integer w1. Write
ak(n) = 2wk ; then

2wk+1 = ak+1(n) = P (ak(n)) = P (2wk) = 1 · 2 · 4 · · · 2wk = 2
wk(wk+1)

2 ,

so

wk+1 =
wk(wk + 1)

2
.

The proof will be completed if we prove that for each choice of S there exists an initial value
w1 such that wk is even if and only if k ∈ S.
Lemma. Suppose that the sequences (b1, b2, . . .) and (c1, c2, . . .) satisfy bk+1 = bk(bk+1)

2
and

ck+1 =
ck(ck+1)

2
for k ≥ 1, and c1 = b1+2m. Then for each k = 1, . . .m we have ck ≡ bk+2m−k+1

(mod 2m−k+2).
As an immediate corollary, we have bk ≡ ck (mod 2) for 1 ≤ k ≤ m and bm+1 ≡ cm+1 + 1

(mod 2).
Proof. We prove the by induction. For k = 1 we have c1 = b1 + 2m so the statement holds.
Suppose the statement is true for some k < m, then for k + 1 we have

ck+1 =
ck (ck + 1)

2
≡
(
bk + 2m−k+1

) (
bk + 2m−k+1 + 1

)
2

=
b2k + 2m−k+2bk + 22m−2k+2 + bk + 2m−k+1

2
=

=
bk(bk + 1)

2
+ 2m−k + 2m−k+1bk + 22m−2k+1 ≡ bk(bk + 1)

2
+ 2m−k (mod 2m−k+1),

therefore ck+1 ≡ bk+1 + 2m−(k+1)+1 (mod 2m−(k+1)+2).
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Going back to the solution of the problem, for every 1 ≤ m ≤ 2017 we construct inductively
a sequence (v1, v2, . . .) such that vk+1 = vk(vk+1)

2
, and for every 1 ≤ k ≤ m, vk is even if and

only if k ∈ S.
For m = 1 we can choose v1 = 0 if 1 ∈ S or v1 = 1 if 1 /∈ S. If we already have such a

sequence (v1, v2, . . .) for a positive integer m, we can choose either the same sequence or choose
v′1 = v1 + 2m and apply the same recurrence v′k+1 =

v′k(v
′
k+1)

2
. By the Lemma, we have vk ≡ v′k

(mod 2) for k ≤ m, but vm+1 and vm+1 have opposite parities; hence, either the sequence (vk)
or the sequence (v′k) satis�es the condition for m+ 1.

Repeating this process for m = 1, 2, . . . , 2017, we obtain a suitable sequence (wk).

Problem 4. There are n people in a city, and each of them has exactly 1000 friends (friendship
is always symmetric). Prove that it is possible to select a group S of people such that at least
n/2017 persons in S have exactly two friends in S.

(Proposed by Rooholah Majdodin and Fedor Petrov, St. Petersburg State University)

Solution. Let d = 1000 and let 0 < p < 1. Choose the set S randomly such that each people
is selected with probability p, independently from the others.

The probability that a certain person is selected for S and knows exactly two members of
S is

q =

(
d

2

)
p3(1− p)d−2.

Choose p = 3/(d+ 1) (this is the value of p for which q is maximal); then

q =

(
d

2

)(
3

d+ 1

)3(
d− 2

d+ 1

)d−2

=

=
27d(d− 1)

2(d+ 1)3

(
1 +

3

d− 2

)−(d−2)
>

27d(d− 1)

2(d+ 1)3
· e−3 > 1

2017
.

Hence, E
(
|S|
)
= nq > n

2017
, so there is a choice for S when |S| > n

2017
.

Problem 5. Let k and n be positive integers with n ≥ k2 − 3k + 4, and let

f(z) = zn−1 + cn−2z
n−2 + . . .+ c0

be a polynomial with complex coe�cients such that

c0cn−2 = c1cn−3 = . . . = cn−2c0 = 0.

Prove that f(z) and zn − 1 have at most n− k common roots.
(Proposed by Vsevolod Lev and Fedor Petrov, St. Petersburg State University)

Solution. Let M = {z : zn = 1}, A = {z ∈ M : f(z) 6= 0} and A−1 = {z−1 : z ∈ A}. We have
to prove |A| ≥ k.

Claim.

A · A−1 =M.

That is, for any η ∈M , there exist some elements a, b ∈ A such that ab−1 = η.

Proof. As is well-known, for every integer m,

∑
z∈M

zm =

{
n if n|m
0 otherwise.
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De�ne cn−1 = 1 and consider

∑
z∈M

z2f(z)f(ηz) =
∑
z∈M

z2
n−1∑
j=0

cjz
j

n−1∑
`=0

c`(ηz)
` =

n−1∑
j=0

n−1∑
`=0

cjc`η
`
∑
z∈M

zj+`+2 =

=
n−1∑
j=0

n−1∑
`=0

cjc`η
`
∑
z∈M

{
n if n|j + `+ 2
0 otherwise

}
= c2n−1n+

n−2∑
j=0

cjcn−2−jη
n−2−jn = n 6= 0.

Therefore there exists some b ∈ M such that f(b) 6= 0 and f(ηb) 6= 0, i.e. b ∈ A, and
a = ηb ∈ A, satisfying ab−1 = η.

By double-counting the elements of M , from the Claim we conclude

|A|
(
|A| − 1

)
≥
∣∣M \ {1}∣∣ = n− 1 ≥ k2 − 3k + 3 > (k − 1)(k − 2)

which shows |A| > k − 1.
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