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Problem 1. Let (x1, x2, . . .) be a sequence of positive real numbers satisfying
∞∑
n=1

xn
2n− 1

= 1. Prove

that
∞∑
k=1

k∑
n=1

xn
k2
≤ 2.

(Proposed by Gerhard J. Woeginger, The Netherlands)

Solution. By interchanging the sums,

∞∑
k=1

k∑
n=1

xn
k2

=
∑

1≤n≤k

xn
k2

=
∞∑
n=1

(
xn

∞∑
k=n

1

k2

)
.

Then we use the upper bound

∞∑
k=n

1

k2
≤

∞∑
k=n

1

k2 − 1
4

=
∞∑
k=n

(
1

k − 1
2

− 1

k + 1
2

)
=

1

n− 1
2

and get
∞∑
k=1

k∑
n=1

xn
k2

=
∞∑
n=1

(
xn

∞∑
k=n

1

k2

)
<
∞∑
n=1

(
xn ·

1

n− 1
2

)
= 2

∞∑
n=1

xn
2n− 1

= 2.

Problem 2. Today, Ivan the Confessor prefers continuous functions f : [0, 1] → R satisfying

f(x)+f(y) ≥ |x−y| for all pairs x, y ∈ [0, 1]. Find the minimum of
∫ 1

0
f over all preferred functions.

(Proposed by Fedor Petrov, St. Petersburg State University)

Solution. The minimum of
∫ 1

0
f is 1

4
.

Applying the condition with 0 ≤ x ≤ 1
2
, y = x+ 1

2
we get

f(x) + f(x+ 1
2
) ≥ 1

2
.

By integrating, ∫ 1

0

f(x) dx =

∫ 1/2

0

(
f(x) + f(x+ 1

2
)
)
dx ≥

∫ 1/2

0

1
2
dx = 1

4
.

On the other hand, the function f(x) =
∣∣x− 1

2

∣∣ satis�es the conditions because
|x− y| =

∣∣∣(x− 1
2

)
+
(
1
2
− y
)∣∣∣ ≤ ∣∣x− 1

2

∣∣+ ∣∣1
2
− y
∣∣ = f(x) + f(y),

and establishes ∫ 1

0

f(x) dx =

∫ 1/2

0

(
1
2
− x
)
dx+

∫ 1

1/2

(
x− 1

2

)
dx =

1

8
+

1

8
=

1

4
.



Problem 3. Let n be a positive integer, and denote by Zn the ring of integers modulo n. Suppose
that there exists a function f : Zn → Zn satisfying the following three properties:

(i) f(x) 6= x,

(ii) f(f(x)) = x,

(iii) f(f(f(x+ 1) + 1) + 1) = x for all x ∈ Zn.

Prove that n ≡ 2 (mod 4).
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Germany)

Solution. From property (ii) we can see that f is surjective, so f is a permutation of the elements in
Zn, and its order is at most 2. Therefore, the permutation f is the product of disjoint transpositions
of the form

(
x, f(x)

)
. Property (i) yields that this permutation has no �xed point, so n is be even,

and the number of transpositions is precisely n/2.
Consider the permutation g(x) = f(x + 1). If g was odd then g ◦ g ◦ g also would be odd. But

property (iii) constraints that g ◦ g ◦ g is the identity which is even. So g cannot be odd; g must
be even. The cyclic permutation h(x) = x − 1 has order n, an even number, so h is odd. Then
f(x) = g ◦ h is odd. Since f is the product of n/2 transpositions, this shows that n/2 must be odd,
so n ≡ 2 (mod 4).

Remark. There exists a function with properties (i�iii) for every n ≡ 2 (mod 4). For n = 2 take f(1) = 2,
f(2) = 1. Here we outline a possible construction for n ≥ 6.

Let n = 4k+2, take a regular polygon with k+2 sides, and divide it into k triangles with k−1 diagonals.

Draw a circle that intersects each side and each diagonal twice; altogether we have 4k+2 intersections. Label

the intersection points clockwise around the circle. On every side and diagonal we have two intersections;

let f send them to each other.

This function f obviously satis�es properties (i) and (ii). For every x we either have f(x + 1) = x or

the e�ect of adding 1 and taking f three times is going around the three sides of a triangle, so this function

satis�es property (iii).

Problem 4. Let k be a positive integer. For each nonnegative integer n, let f(n) be the number
of solutions (x1, . . . , xk) ∈ Zk of the inequality |x1| + ... + |xk| ≤ n. Prove that for every n ≥ 1, we
have f(n− 1)f(n+ 1) ≤ f(n)2.

(Proposed by Esteban Arreaga, Renan Finder and José Madrid, IMPA, Rio de Janeiro)

Solution 1. We prove by induction on k. If k = 1 then we have f(n) = 2n+ 1 and the statement
immediately follows from the AM-GM inequality.

Assume that k ≥ 2 and the statement is true for k − 1. Let g(m) be the number of integer
solutions of |x1| + ... + |xk−1| ≤ m; by the induction hypothesis g(m − 1)g(m + 1) ≤ g(m)2 holds;
this can be transformed to

g(0)

g(1)
≤ g(1)

g(2)
≤ g(2)

g(3)
≤ . . . .



For any integer constant c, the inequality |x1|+...+|xk−1|+|c| ≤ n has g
(
n−|c|

)
integer solutions.

Therefore, we have the recurrence relation

f(n) =
n∑

c=−n

g
(
n− |c|

)
= g(n) + 2g(n− 1) + ...+ 2g(0).

It follows that
f(n− 1)

f(n)
=

g(n− 1) + 2g(n− 2) + ...+ 2g(0)

g(n) + 2g(n− 1) + ...+ 2g(1) + 2g(0)
≤

≤ g(n) + g(n− 1) + (g(n− 1) + ...+ 2g(0) + 2 · 0)
g(n+ 1) + g(n) + (g(n) + ...+ 2g(1) + 2g(0))

=
f(n)

f(n+ 1)

as required.

Solution 2. We �rst compute the generating function for f(n):

∞∑
n=0

f(n)qn =
∑

(x1,x2,...,xk)∈Zk

∞∑
c=0

q|x1|+|x2|+···+|xk|+c =

(∑
x∈Z

q|x|

)k
1

1− q
=

(1 + q)k

(1− q)k+1
.

For each a = 0, 1, . . . denote by ga(n) (n = 0, 1, 2, . . .) the coe�cients in the following expansion:

(1 + q)a

(1− q)k+1
=
∞∑
n=0

ga(n)q
n.

So it is clear that ga+1(n) = ga(n)+ga(n−1) (n ≥ 1), ga(0) = 1. Call a sequence of positive numbers

g(0), g(1), g(2), . . . good if g(n−1)
g(n)

(n = 1, 2, . . .) is an increasing sequence. It is straightforward to
check that g0 is good:

g0(n) =

(
k + n

k

)
,

g0(n− 1)

g0(n)
=

n

k + n
.

If g is a good sequence then a new sequence g′ de�ned by g′(0) = g(0), g′(n) = g(n) + g(n − 1)
(n ≥ 1) is also good:

g′(n− 1)

g′(n)
=
g(n− 1) + g(n− 2)

g(n) + g(n− 1)
=

1 + g(n−2)
g(n−1)

1 + g(n)
g(n−1)

,

where de�ne g(−1) = 0. Thus we see that each of the sequences g1, g2, . . . , gk = f are good. So the
desired inequality holds.

Problem 5. Let A be a n × n complex matrix whose eigenvalues have absolute value at most 1.
Prove that

‖An‖ ≤ n

ln 2
‖A‖n−1.

(Here ‖B‖ = sup
‖x‖≤1

‖Bx‖ for every n × n matrix B and ‖x‖ =

√
n∑

i=1

|xi|2 for every complex vector

x ∈ Cn.)
(Proposed by Ian Morris and Fedor Petrov, St. Petersburg State University)

Solution 1. Let r = ‖A‖. We have to prove ‖An‖ ≤ n
ln 2
rn−1.

As is well-known, the matrix norm satis�es ‖XY ‖ ≤ ‖X‖ · ‖Y ‖ for any matrices X, Y , and as a
simple consequence, ‖Ak‖ ≤ ‖A‖k = rk for every positive integer k.

Let χ(t) = (t − λ1)(t − λ2) . . . (t − λn) = tn + c1t
n−1 + · · · + cn be the characteristic polynomial

of A. From Vieta's formulas we get

|ck| =

∣∣∣∣∣ ∑
1≤i1<...<ik≤n

λi1 · · ·λik

∣∣∣∣∣ ≤ ∑
1≤i1<...<ik≤n

∣∣λi1 · · ·λik∣∣ ≤ (nk
)

(k = 1, 2, . . . , n)



By the Cayley�Hamilton theorem we have χ(A) = 0, so

‖An‖ = ‖c1An−1 + · · ·+ cn‖ ≤
n∑

k=1

(
n

k

)
‖Ak‖ ≤

n∑
k=1

(
n

k

)
rk = (1 + r)n − rn.

Combining this with the trivial estimate ‖An‖ ≤ rn, we have

‖An‖ ≤ min
(
rn, (1 + r)n − rn)

)
.

Let r0 =
1

n√2−1 ; it is easy to check that the two bounds are equal if r = r0, moreover

r0 =
1

eln 2/n − 1
<

n

ln 2
.

For r ≤ r0 apply the trivial bound:

‖An‖ ≤ rn ≤ r0 · rn−1 <
n

ln 2
rn−1.

For r > r0 we have

‖An‖ ≤ (1 + r)n − rn = rn−1 · (1 + r)n − rn

rn−1
.

Notice that the function f(r) = (1+r)n−rn
rn−1 is decreasing because the numerator has degree n− 1 and

all coe�cients are positive, so

(1 + r)n − rn

rn−1
<

(1 + r0)
n − rn0

rn−10

= r0
(
(1 + 1/r0)

n − 1) = r0 <
n

ln 2
,

so ‖An‖ < n
ln 2
rn−1.

Solution 2. We will use the following facts which are easy to prove:

• For any square matrix A there exists a unitary matrix U such that UAU−1 is upper-triangular.

• For any matrices A, B we have ‖A‖ ≤ ‖(A|B)‖ and ‖B‖ ≤ ‖(A|B)‖ where (A|B) is the matrix
whose columns are the columns of A and the columns of B.

• For any matrices A, B we have ‖A‖ ≤ ‖
(
A
B

)
‖ and ‖B‖ ≤ ‖

(
A
B

)
‖ where

(
A
B

)
is the matrix

whose rows are the rows of A and the rows of B.

• Adding a zero row or a zero column to a matrix does not change its norm.

We will prove a stronger inequality
‖An‖ ≤ n‖A‖n−1

for any n× n matrix A whose eigenvalues have absolute value at most 1. We proceed by induction
on n. The case n = 1 is trivial. Without loss of generality we can assume that the matrix A is
upper-triangular. So we have

A =


a11 a12 · · · a1n
0 a22 · · · a2n
· · · · · · · · ·
0 0 · · · ann

 .

Note that the eigenvalues of A are precisely the diagonal entries. We split A as the sum of 3 matrices,
A = X + Y + Z as follows:

X =


a11 0 · · · 0
0 0 · · · 0
· · · · · · · · ·
0 0 · · · 0

 , Y =


0 a12 · · · a1n
0 0 · · · 0
· · · · · · · · ·
0 0 · · · 0

 , Z =


0 0 · · · 0
0 a22 · · · a2n
· · · · · · · · ·
0 0 · · · ann

 .



Denote by A′ the matrix obtained from A by removing the �rst row and the �rst column:

A′ =

a22 · · · a2n
· · · · · ·
0 · · · ann

 .

We have ‖X‖ ≤ 1 because |a11| ≤ 1. We also have

‖A′‖ = ‖Z‖ ≤ ‖Y + Z‖ ≤ ‖A‖.

Now we decompose An as follows:

An = XAn−1 + (Y + Z)An−1.

We substitute A = X + Y + Z in the second term and expand the parentheses. Because of the
following identities:

Y 2 = 0, Y X = 0, ZY = 0, ZX = 0

only the terms Y Zn−1 and Zn survive. So we have

An = XAn−1 + (Y + Z)Zn−1.

By the induction hypothesis we have ‖A′n−1‖ ≤ (n − 1)‖A′‖n−2, hence ‖Zn−1‖ ≤ (n − 1)‖Z‖n−2 ≤
(n− 1)‖A‖n−2. Therefore

‖An‖ ≤ ‖XAn−1‖+ ‖(Y + Z)Zn−1‖ ≤ ‖A‖n−1 + (n− 1)‖Y + Z‖‖A‖n−2 ≤ n‖A‖n−1.


