IMC 2016, Blagoevgrad, Bulgaria

Day 2, July 28, 2016

Problem 6. Let $(x_1, x_2, ...)$ be a sequence of positive real numbers satisfying $\sum_{n=1}^{\infty} \frac{x_n}{2n-1} = 1$.

Prove that

$$\sum_{k=1}^{\infty} \sum_{n=1}^{k} \frac{x_n}{k^2} \le 2.$$

(10 points)

Problem 7. Today, Ivan the Confessor prefers continuous functions $f : [0, 1] \to \mathbb{R}$ satisfying $f(x) + f(y) \ge |x - y|$ for all pairs $x, y \in [0, 1]$. Find the minimum of $\int_0^1 f$ over all preferred functions. (10 points)

(- /

Problem 8. Let *n* be a positive integer, and denote by \mathbb{Z}_n the ring of integers modulo *n*. Suppose that there exists a function $f : \mathbb{Z}_n \to \mathbb{Z}_n$ satisfying the following three properties:

(i) $f(x) \neq x$, (ii) f(f(x)) = x, (iii) f(f(f(x+1)+1)+1) = x for all $x \in \mathbb{Z}_n$. Prove that $n \equiv 2 \pmod{4}$. (10 points)

Problem 9. Let k be a positive integer. For each nonnegative integer n, let f(n) be the number of solutions $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ of the inequality $|x_1| + \ldots + |x_k| \leq n$. Prove that for every $n \geq 1$, we have $f(n-1)f(n+1) \leq f(n)^2$.

(10 points)

Problem 10. Let A be a $n \times n$ complex matrix whose eigenvalues have absolute value at most 1. Prove that

$$||A^n|| \le \frac{n}{\ln 2} ||A||^{n-1}$$

(Here $||B|| = \sup_{\|x\| \le 1} ||Bx||$ for every $n \times n$ matrix B and $\|x\| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for every complex vector $x \in \mathbb{C}^n$.)

(10 points)