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Problem 6. Prove that
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;m<z

(Proposed by Ivan Krijan, University of Zagreb)
Solution. We prove that
1 2 2
—_— < — = — (1)
Vn(n+1) n  /n+1
Multiplying by /n(n + 1), the inequality (1) is equivalent with
1<2(n+1)—2y/n(n+1)
2y/n(n+1)<n+(n+1)
which is true by the AM-GM inequality.
Applying (1) to the terms in the left-hand side
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Problem 7. Compute
1 (A
lim — / Asdz.
A—+o0 A 1
(Proposed by Jan Sustek, University of Ostrava)
Solution 1. We prove that

For A > 1 the integrand is greater than 1, so

I I 1 1
— Azdr > — lde=—=(A-1)=1-— —.
A /1 S /1 r=gA-D A
In order to find a tight upper bound, fix two real numbers, 6 > 0 and K > 0, and split the interval

into three parts at the points 1+ ¢ and K log A. Notice that for sufficiently large A (i.e., for A > Ay(9, K)

with some Ay(d, K) > 1) we have 1 +J < Klog A < A.) For A > 1 the integrand is decreasing, so we can
estimate it by its value at the starting points of the intervals

1 /A ) 1 (/1 /KlogA / >
— Azdr = — <
A 1 A 1 Klog A

:Z(é-A+(KlogA—1—6)A F(A- KlogA)AKlogA) <
< (5A+KA1+6 log A+ A- Amw) 5+ KA T log A+ %
Hence, for A > Ay(0, K) we have

1—%<% Aidx<5+KA_l%ilogA+e%.



Taking the limit A — oo we obtain
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1 <liminf — Azdz < limsu —/ Azde < § +ex
A A 1 A—>oopA 1

Now from 6 — +0 and K — oo we get

1
1 <liminf —
A
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Azdr < limsup—/ Ardg <1
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so liminf & [" Avdz = limsup flA Azdz = 1 and therefore
A—o0

1 1
AEIEOOZ/I Arde =1.
Solution 2. We Wlll employ I’ Hospltal’s rule

Let f(A,z) = Az, g(A,z) = LAz
9

f1 f(A x)dz and G(A f1 (A, z)dz. Since
549 are continuous, the parametric 1ntegrals F(A) and G(A) are dlfferentlable Wlth respect to A, and
49
F'(A) = f(A,A) +
1
and
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Since lim_,oo A4 = 1, we can see that lima_,., G'(A) = 0. Aplying 'Hospital’s rule to Ah—I};o% we
get
GA) . G4
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lim F'(A) = lim (Afll —i—L) =14+0=1
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Now applying I’Hospital’s rule to hm AA) we get
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words is 37

Problem 8. Consider all 26%° words of length 26 in the Latin alphabet. Define the weight of a word as
1/(k+ 1), where k is the number of letters not used in this word. Prove that the sum of the weights of all

Solution. Let n = 26, then 3 = (n + 1)"~1. We use the following well-known
A" f () =30 (1) (") S i) =

(Proposed by Fedor Petrov, St. Petersburg State University)
Lemma. If f(z) is a polynomial of degree at most n, then its (n + 1)-st finite difference vanishes
0

In other words, f(z)
Tr =

Proof. If A is the operator which maps f(z) to f(z +1) —
of A and the claim follows from the observation that A decreases the power of a polynomial
= Y (1)

i=1\"
—1 and denoting i = 7 + 1 we get

(n+1)"

f(z), then A" is indeed (n + 1)-st power
(=) (") f(x +14). Applying this for f(z)

(n — )", substituting
B Z(_l) (n +1 &
j=0 J+l

)( —j)n:(nJrl)Z(n) ' <._1)j

=0




The j-th summand (’;) D (n — 7)™ may be interpreted as follows: choose j letters, consider all

J+1 )
(=1)’

(n — 7)™ words without those letters and sum up over all those words. Now we change the order of

Jj+1
summation, counting at ﬁrst by words. For any fixed word W with k absent letters we get Z?:o (’;) (J_Tlij =
%H-Z?:O(—l)j- (’;ﬁ) = 7> since the alternating sum of binomial coefficients 23—71( 1)7- (ljﬁ) vanishes.

That is, after changing order of summation we get exactly initial sum, and it equals (n + 1)"~1.

Problem 9. An n x n complex matrix A is called t-normal if AA* = A'A where A! is the transpose of
A. For each n, determine the maximum dimension of a linear space of complex n X n matrices consisting
of t-normal matrices.

(Proposed by Shachar Carmeli, Weizmann Institute of Science)

Solution.

Answer: The maximum dimension of such a space is
+1)

n(n+1)

5
can be achieved, for example the symmetric matrices are obviously t-normal and
n(n+1

The number 2

they form a linear space with dimension . We shall show that this is the maximal possible dimension.
Let M, denote the space of n x n complex matrices, let S, C M, be the subspace of all symmetric
matrices and let A, C M, be the subspace of all anti-symmetric matrices, i.e. matrices A for which
Al = — A,
Let V' C M, be a linear subspace consisting of t-normal matrices. We have to show that dim(V) <
dim(S,,). Let m: V — S,, denote the linear map w(A) = A+ A’. We have

dim (V) = dim(Ker (7)) 4+ dim(Im (7))

so we have to prove that dim(Ker (7)) + dim(Im (7)) < dim(S,). Notice that Ker (7) C A,.
We claim that for every A € Ker (7) and B € V, An(B) = 7(B)A. In other words, Ker () and Im (7)
commute. Indeed, if A, B € V and A = —A! then

(A+B)(A+B)!=(A+B)'(A+B) &
o AA'+ AB'+ BA'+ BB' = A'A+ A'B+ B'A+ B'B &
& AB'—BA=—-AB+ B'A< A(B+ B") = (B+ B)A &
& Ar(B) = 7(B)A.

Our bound on the dimension on V follows from the following lemma:

Lemma. Let X C S, and Y C A, be linear subspaces such that every element of X commutes with every
element of Y. Then
dim(X) + dim(Y) < dim(S,,)

Proof. Without loss of generality we may assume X = Zg (V) :={z € S, : zy = yxr Yy € Y}. Define the
bilinear map B : S,, x A,, — C by B(z,y) = tr(d[x,y]) where [x,y] = vy — yz and d = diag(1, ...,n) is the
matrix with diagonal elements 1,...,n and zeros off the diagonal. Clearly B(X,Y) = {0}. Furthermore, if
y € Y satisfies that B(x,y) = 0 for all x € S, then tr(d[x,y]) = —tr([d,x],y]) = 0 for every x € S,.

We claim that {[d,z] : 2 € S,} = A,. Let E/ denote the matrix with 1 in the entry (i,) and 0 in
all other entries. Then a direct computation shows that [d, E/] = (j — i)E! and therefore [d, E/ + Bl =
(j—4) (B — E?) and the collection {(j — i) (B! — E) b <icj<n span A, for i # j.

It follows that if B(z,y) = 0 for all z € S,, then tr(yz) = 0 for every z € A,. But then, taking z = ¢,
where ¢ is the entry-wise complex conjugate of y, we get 0 = tr(yy) = —tr(yy") which is the sum of squares
of all the entries of y. This means that y = 0.

It follows that if 4y, ...,y € Y are linearly independent then the equations

B(x,y1) =0, ..., B(z,yx)=0



are linearly independent as linear equations in x, otherwise there are ay, ..., a; such that B(z,a1y; + ... +
axyr) = 0 for every x € S, a contradiction to the observation above. Since the solution of k linearly
independent linear equations is of codimension k,

dim({x € S, : [x,y;] =0, fori=1,..,k}) <

<dim(x € S, : B(x,y;) =0fori=1,....k) = dim(S,) — k.
The lemma follows by taking v, ..., yx to be a basis of Y.

Since Ker (7) and Im (7) commute, by the lemma we deduce that

n(n—l—l)'

dim(V) = dim(Ker (7)) 4+ dim(Im (7)) < dim(S,,) = 5

Problem 10. Let n be a positive integer, and let p(x) be a polynomial of degree n with integer coefficients.

Prove that
max |p(z)| > i
0<z<1 en

(Proposed by Géza Kos, E6tvos University, Budapest)

Solution. Let

M = goa [p(e)]

For every positive integer k, let

Jp = /01 (p(:v))%dx.

2kn 2kn
Obviously 0 < Ji < M?* is a rational number. If (p(x))** = 3 ax 2’ then Jp = Y° 7. Taking the least
i=0 i=0
1
common denominator, we can see that J, > .
lem(1,2,...,2kn+1)
An equivalent form of the prime number theorem is that loglem(1,2,..., N) ~ N if N — oo. Therefore,

for every € > 0 and sufficiently large £ we have
1Cm(17 27 ceey 2kn -+ 1) < €(1+8)(2kn+1)

and therefore

1 1
M?* > J, > -
"= lem(L,2,...,2kn+ 1) ~ e(He)@kntD)’
1
M>—"
Z 0 )
Taking £ — oo and then ¢ — +0 we get
1
M>—.
en

Since e is transcendent, equality is impossible.

Remark. The constant % ~ 0.3679 is not sharp. It is known that the best constant is between 0.4213 and 0.4232.
(See 1. E. Pritsker, The Gelfond-Schnirelman method in prime number theory, Canad. J. Math. 57 (2005),
1080-1101.)



