IMC 2014, Blagoevgrad, Bulgaria

Day 2, August 1, 2014

Problem 1. For a positive integer x, denote its n^{th} decimal digit by $d_n(x)$, i.e. $d_n(x) \in \{0, 1, \ldots, 9\}$ and $x = \sum_{n=1}^{\infty} d_n(x) 10^{n-1}$. Suppose that for some sequence $(a_n)_{n=1}^{\infty}$, there are only finitely many zeros in the sequence $(d_n(a_n))_{n=1}^{\infty}$. Prove that there are infinitely many positive integers that do not occur in the sequence $(a_n)_{n=1}^{\infty}$.

(10 points)

Problem 2. Let $A = (a_{ij})_{i,j=1}^n$ be a symmetric $n \times n$ matrix with real entries, and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ denote its eigenvalues. Show that

$$\sum_{1 \le i < j \le n} a_{ii} a_{jj} \ge \sum_{1 \le i < j \le n} \lambda_i \lambda_j,$$

and determine all matrices for which equality holds.

(10 points)

Problem 3. Let $f(x) = \frac{\sin x}{x}$, for x > 0, and let n be a positive integer. Prove that $|f^{(n)}(x)| < \frac{1}{n+1}$, where $f^{(n)}$ denotes the n^{th} derivative of f. (10 points)

Problem 4. We say that a subset of \mathbb{R}^n is *k*-almost contained by a hyperplane if there are less than *k* points in that set which do not belong to the hyperplane. We call a finite set of points *k*-generic if there is no hyperplane that *k*-almost contains the set. For each pair of positive integers *k* and *n*, find the minimal number d(k, n) such that every finite *k*-generic set in \mathbb{R}^n contains a *k*-generic subset with at most d(k, n) elements.

(10 points)

Problem 5. For every positive integer n, denote by D_n the number of permutations (x_1, \ldots, x_n) of $(1, 2, \ldots, n)$ such that $x_j \neq j$ for every $1 \leq j \leq n$. For $1 \leq k \leq \frac{n}{2}$, denote by $\Delta(n, k)$ the number of permutations (x_1, \ldots, x_n) of $(1, 2, \ldots, n)$ such that $x_i = k + i$ for every $1 \leq i \leq k$ and $x_j \neq j$ for every $1 \leq j \leq n$. Prove that

$$\Delta(n,k) = \sum_{i=0}^{k-1} \binom{k-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}.$$

(10 points)