IMC 2012, Blagoevgrad, Bulgaria
Day 2, July 29, 2012

Problem 1. Consider a polynomial
f(@) =2 +apon 2™ + ...t arz+ao.

Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the
coefficients ag, . . . , asg1; and assign a real value to it. Albert has the first move. Once a value is assigned
to a coefficient, it cannot be changed any more. The game ends after all the coefficients have been
assigned values.

Homer’s goal is to make f(z) divisible by a fixed polynomial m(z) and Albert’s goal is to prevent
this.

(a) Which of the players has a winning strategy if m(z) = x — 20127
(b) Which of the players has a winning strategy if m(x) = 2* + 17

(Proposed by Fedor Duzhin, Nanyang Technological University)

Solution. We show that Homer has a winning strategy in both part (a) and part (b).

(a) Notice that the last move is Homer’s, and only the last move matters. Homer wins if and only if
f(2012) =0, i.e.

20122012 4 9017 2012201 + 4 @) 20128 + ...+ @y 2012 4 ag = 0. (1)

Suppose that all of the coefficients except for a; have been assigned values. Then Homer’s goal is to
establish (1) which is a linear equation on aj. Clearly, it has a solution and hence Homer can win.

(b) Define the polynomials
g(y) = ap + asy + asy> + ...+ a0y + ¢ and h(y) = a1 + azy + asy® + ...+ a1y,

so f(x) = g(2?) + h(«?) - z. Homer wins if he can achieve that g(y) and h(y) are divisible by y + 1, i.e.
g(—=1) = h(-1) =0.

Notice that both ¢g(y) and h(y) have an even number of undetermined coefficients in the beginning
of the game. A possible strategy for Homer is to follow Albert: whenever Albert assigns a value to a
coefficient in g or h, in the next move Homer chooses the value for a coefficient in the same polynomial.
This way Homer defines the last coefficient in g and he also chooses the last coefficient in h. Similarly
to part (a), Homer can choose these two last coefficients in such a way that both g(—1) = 0 and
h(—1) = 0 hold.

Problem 2. Define the sequence ag, aq, ... inductively by ag =1, a; = % and
2
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pi1 = ———— forn>1.
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Show that the series E + converges and determine its value.
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(Proposed by Christophe Debry, KU Leuven, Belgium)



Solution. Observe that
(1 + (/{3 + l)ak)akH

kay, = = By (k4 Dagys forall k> 1,
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and hence
"~ apyn @ - 1
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for all n > 0.

n o0
By (1) we have kz—o a’;—:l < 1. Since all terms are positive, this implies that the series kz_oa’;—:l is

convergent. The sequence of terms, a’;:l must converge to zero. In particular, there is an index ng such
that a‘;—:l < % for n > ng. Then, by induction on n, we have a, < 2% with some positive constant C.

From na,, < % — 0 we get na,, — 0, and therefore
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Remark. The inequality a, < =

< 5= can be proved by a direct induction as well.

Problem 3. Is the set of positive integers n such that n! + 1 divides (2012n)! finite or infinite?
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution 1. Consider a positive integer n with n! 4 1}(201271)!. It is well-known that for arbitrary
nonnegative integers ay, ..., ag, the number (a; + ...+ ax)! is divisible by a;!- ... ag!. (The number
of sequences consisting of a; digits 1, ..., a; digits k, is (62:7726,??)'
(2012n)!.

Since n! + 1 is co-prime with (n!)?12 their product (n! + 1)(n!)?°'? also divides (2012n)!, and
therefore

.) In particular, (n!)?"1? divides

(n!+1) - (n))®* < (2012n)!.

By the known inequalities ("jl)n <n! <n" we get
n 2018n 112013 | 112012 | 2012n
< (M) < (nl4+1) - (n))™* < (2012n)! < (2012n)
e

n< 2012201262013.

Therefore, there are only finitely many such integers n.

Remark. Instead of the estimate ("T'fl)n < n!, we may apply the Multinomial theorem:

N!
(z1+ -+ z)N = Z ﬁxlflx?[
it k=N LT
Applying this to N = 2012n, ¢ = 2012 and 21 = ... = 2y = 1,
2012n)!
((1)72073 < (L+14...41)2012n — 901220127
n ———
2012
(2012n)! ot
n!<n!+1§(n!)w<2012 n



On the right-hand side we have a geometric progression which increases slower than the factorial
on the left-hand side, so this is true only for finitely many n.

Solution 2. Assume that n > 2012 is an integer with n! 4 1‘(201271)!. Notice that all prime divisors
of n! 4+ 1 are greater than n, and all prime divisors of (2012n)! are smaller than 2012n.

Consider a prime p with n < p < 2012n. Among 1,2, ...,2012n there are [%} < 2012 numbers

divisible by p; by p? > n? > 2012n, none of them is divisible by p?. Therefore, the exponent of p in the
prime factorization of (2012n)! is at most 2011. Hence,

nl+1=ged(nl+1,(20120)) < [ »p™"

n<p<2012p
Applying the inequality ] p < 4%,
p<X
2011
n 2011 2012:2011\7
n! < H p?t < < H p) < (£PM)7 = (4 )" (2)
n<p<2012p p<2012n

Again, we have a factorial on the left-and side and a geometric progression on the right-hand side.
Problem 4. Let n > 2 be an integer. Find all real numbers a such that there exist real numbers z1,
..., x, satisfying
ri(l—x9) =0l —23)=... =2, 1(1 —2,) =2,(1 —21) = a. (1)
(Proposed by Walther Janous and Gerhard Kirchner, Innsbruck)

Solution. Throughout the solution we will use the notation =, = ;.
We prove that the set of possible values of a is

1 1 n
—00, — —— keN 1< — 5.
( ’4:|U{4C082—k:’ g ’ b < 2}

In the case a < i we can choose x; such that z1(1 —x;) = a and set 1 = x5 = ... = z,,. Hence we
will now suppose that a > i.
The system (1) gives the recurrence formula
a Ti—a

x2+1:(p<xl):1__: s Z:L,n
&y L

The fractional linear transform ¢ can be interpreted as a projective transform of the real projective

line R U {oo}; the map ¢ is an element of the group PGLs(R), represented by the linear transform
1 - .

M = (1 Oa). (Note that det M # 0 since a # 0.) The transform ¢™ can be represented by M™. A

point [u, v] (written in homogenous coordinates) is a fixed point of this transform if and only if (u,v

is an eigenvector of M"™. Since the entries of M™ and the coordinates u, v are real, the corresponding

eigenvalue is real, too.

)T

The characteristic polynomial of M is 22> — x + a, which has no real root for a > i. So M has two
conjugate complex eigenvalues A\ o = %(1 + Vda — 12’). The eigenvalues of M" are A} ,, they are real
if and only if arg A\; 2 = j:%” with some integer k; this is equivalent with

k
+v3a — 1 =tan -~
n

(1 + tan? %’r) = 1

a = _W
4 cos?® ==
n
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If arg A\; = % then A} = A3, so the eigenvalues of M™ are equal. The eigenvalues of M are distinct,
so M and M™ have two linearly independent eigenvectors. Hence, M" is a multiple of the identity. This
means that the projective transform ¢" is the identity; starting from an arbitrary point z; € RU{oo},
the cycle x1, zo, . . ., z, closes at x,,,1 = x1. There are only finitely many cycles z1, xs, ..., x, containing
the point oo; all other cycles are solutions for (1).

Remark. If we write x; = P + Qtant; where P,Q and ty,...,t, are real numbers, the recurrence relation
re-writes as

(P+ Qtant;)(1 — P —Qtant;11) =a
(1 - P)Qtant; — PQtant; 1 =a+ P(P — 1)+ Q%tantjtantj 1 (j=1,2,...,n).
tan o« — tan

In view of the identity tan(a — ) = m, it is reasonable to choose P = %, and Q = /a — %. Then
an o tan

the recurrence leads to
tj —tj41 = arctanv4a —1 (mod 7).

Problem 5. Let ¢ > 1 be a real number. Let G be an abelian group and let A C G be a finite set
satisfying |A + A| < ¢|A|, where X +Y :={x+y |z € X, y € Y} and |Z] denotes the cardinality of
Z. Prove that
A+ A+.. .+ Al <A
k t?:nes
for every positive integer k. (Pliinnecke’s inequality)
(Proposed by Przemyslaw Mazur, Jagiellonian University)

Solution. Let B be a nonempty subset of A for which the value of the expression ¢; = |A|J];f3| is the
least possible. Note that ¢; < ¢ since A is one of the possible choices of B.

Lemma 1. For any finite set D C G we have |A+ B+ D| < ¢;|B + D|.

Proof. Apply induction on the cardinality of D. For |D| = 1 the Lemma is true by the definition of ¢;.
Suppose it is true for some D and let x ¢ D. Let By ={y € B|x+y € B+ D}. Then B+ (DU {x})
decomposes into the union of two disjoint sets:

B+ (DU{z})=(B+D)U((B\ Bi) + {z})

and therefore |B+ (DU {z})| = |B+ D| + |B| — |B1|]. Now we need to deal with the cardinality of the
set A+ B+ (DU{z}). Writing A+ B+ (DU{z}) =(A+ B+ D)U (A+ B+ {z}) we count some
of the elements twice: for example if y € By, then A+ {y} + {z} C (A+ B+ D)n(A+ B+ {z}).
Therefore all the elements of the set A+ By + {z} are counted twice and thus

A+ B+ (DU{a})| < |A+ B+ D|+|A+ B+ {z} —[A+ B+ {z}| =
=[A+ B+ D|+[A+ B|=|A+ Bi| <a(|B+ D] = [B] = [Bi]) = e1| B+ (D U{x})],

where the last inequality follows from the inductive hypothesis and the observation that |A‘j§f3| = <
‘A‘Eﬁ” (or By is the empty set). O

Lemma 2. For every k > 1 we have |A+ ...+ A+B| < cf|B].

k times
Proof. Induction on k. For k = 1 the statement is true by definition of ¢;. For greater k set D =

A+ ...+ Ain the previous lemma: |A+ ...+ A+B| <c|A+...+ A+B| < c}|B|. O
k-1 ti k ti k1 ti

Now notice that
|A+...+A|<|A+...+ A+B| < c}|B| < " A

TV
k times k times

Remark. The proof above due to Giorgios Petridis and can be found at http://gowers.wordpress.com/
2011/02/10/a-new-way-of-proving-sumset-estimates/



