
IMC2012, Blagoevgrad, Bulgaria
Day 2, July 29, 2012

Problem 1. Consider a polynomial

f(x) = x2012 + a2011 x
2011 + . . .+ a1 x+ a0 .

Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the
coefficients a0, . . . , a2011 and assign a real value to it. Albert has the first move. Once a value is assigned
to a coefficient, it cannot be changed any more. The game ends after all the coefficients have been
assigned values.

Homer’s goal is to make f(x) divisible by a fixed polynomial m(x) and Albert’s goal is to prevent
this.

(a) Which of the players has a winning strategy if m(x) = x− 2012?

(b) Which of the players has a winning strategy if m(x) = x2 + 1?

(Proposed by Fedor Duzhin, Nanyang Technological University)

Solution. We show that Homer has a winning strategy in both part (a) and part (b).

(a) Notice that the last move is Homer’s, and only the last move matters. Homer wins if and only if
f(2012) = 0, i.e.

20122012 + a2011 2012
2011 + . . .+ ak 2012

k + . . .+ a1 2012 + a0 = 0. (1)

Suppose that all of the coefficients except for ak have been assigned values. Then Homer’s goal is to
establish (1) which is a linear equation on ak. Clearly, it has a solution and hence Homer can win.

(b) Define the polynomials

g(y) = a0 + a2y + a4y
2 + . . .+ a2010y

1005 + y1006 and h(y) = a1 + a3y + a5y
2 + . . .+ a2011y

1005,

so f(x) = g(x2) + h(x2) · x. Homer wins if he can achieve that g(y) and h(y) are divisible by y+1, i.e.
g(−1) = h(−1) = 0.

Notice that both g(y) and h(y) have an even number of undetermined coefficients in the beginning
of the game. A possible strategy for Homer is to follow Albert: whenever Albert assigns a value to a
coefficient in g or h, in the next move Homer chooses the value for a coefficient in the same polynomial.
This way Homer defines the last coefficient in g and he also chooses the last coefficient in h. Similarly
to part (a), Homer can choose these two last coefficients in such a way that both g(−1) = 0 and
h(−1) = 0 hold.

Problem 2. Define the sequence a0, a1, . . . inductively by a0 = 1, a1 =
1
2

and

an+1 =
na2n

1 + (n + 1)an
for n ≥ 1.

Show that the series
∞∑

k=0

ak+1

ak
converges and determine its value.

(Proposed by Christophe Debry, KU Leuven, Belgium)
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Solution. Observe that

kak =
(1 + (k + 1)ak)ak+1

ak
=

ak+1

ak
+ (k + 1)ak+1 for all k ≥ 1,

and hence

n∑

k=0

ak+1

ak
=

a1

a0
+

n∑

k=1

(kak − (k + 1)ak+1) =
1

2
+ 1 · a1 − (n + 1)an+1 = 1− (n+ 1)an+1 (1)

for all n ≥ 0.

By (1) we have
n∑

k=0

ak+1

ak
< 1. Since all terms are positive, this implies that the series

∞∑

k=0

ak+1

ak
is

convergent. The sequence of terms,
ak+1

ak
must converge to zero. In particular, there is an index n0 such

that
ak+1

ak
< 1

2
for n ≥ n0. Then, by induction on n, we have an < C

2n
with some positive constant C.

From nan < Cn
2n

→ 0 we get nan → 0, and therefore

∞∑

k=0

ak+1

ak
= lim

n→∞

n∑

k=0

ak+1

ak
= lim

n→∞

(

1− (n+ 1)an+1

)

= 1.

Remark. The inequality an ≤ 1
2n can be proved by a direct induction as well.

Problem 3. Is the set of positive integers n such that n! + 1 divides (2012n)! finite or infinite?
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution 1. Consider a positive integer n with n! + 1
∣
∣(2012n)!. It is well-known that for arbitrary

nonnegative integers a1, . . . , ak, the number (a1 + . . . + ak)! is divisible by a1! · . . . · ak!. (The number

of sequences consisting of a1 digits 1, . . . , ak digits k, is (a1+...+ak)!
a1!·...·ak !

.) In particular, (n!)2012 divides

(2012n)!.
Since n! + 1 is co-prime with (n!)2012, their product (n! + 1)(n!)2012 also divides (2012n)!, and

therefore
(n! + 1) · (n!)2012 ≤ (2012n)! .

By the known inequalities
(
n+1
e

)n
< n! ≤ nn, we get

(n

e

)2013n

< (n!)2013 < (n! + 1) · (n!)2012 ≤ (2012n)! < (2012n)2012n

n < 20122012e2013.

Therefore, there are only finitely many such integers n.

Remark. Instead of the estimate
(
n+1
e

)n
< n!, we may apply the Multinomial theorem:

(x1 + · · ·+ xℓ)
N =

∑

k1+...+kℓ=N

N !

k1! · . . . · kℓ!
xk11 . . . x

kℓ
ℓ .

Applying this to N = 2012n, ℓ = 2012 and x1 = . . . = xℓ = 1,

(2012n)!

(n!)2012
< (1 + 1 + . . .+ 1
︸ ︷︷ ︸

2012

)2012n = 20122012n,

n! < n! + 1 ≤ (2012n)!

(n!)2012
< 20122012n.
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On the right-hand side we have a geometric progression which increases slower than the factorial
on the left-hand side, so this is true only for finitely many n.

Solution 2. Assume that n > 2012 is an integer with n! + 1
∣
∣(2012n)!. Notice that all prime divisors

of n! + 1 are greater than n, and all prime divisors of (2012n)! are smaller than 2012n.

Consider a prime p with n < p < 2012n. Among 1, 2, . . . , 2012n there are
[
2012n

p

]

< 2012 numbers

divisible by p; by p2 > n2 > 2012n, none of them is divisible by p2. Therefore, the exponent of p in the
prime factorization of (2012n)! is at most 2011. Hence,

n! + 1 = gcd
(
n! + 1, (2012n)!

)
<

∏

n<p<2012p

p2011.

Applying the inequality
∏

p≤X

p < 4X ,

n! <
∏

n<p<2012p

p2011 <

(
∏

p<2012n

p

)2011

<
(
42012n

)2011
=
(
42012·2011

)n
. (2)

Again, we have a factorial on the left-and side and a geometric progression on the right-hand side.

Problem 4. Let n ≥ 2 be an integer. Find all real numbers a such that there exist real numbers x1,
. . . , xn satisfying

x1(1− x2) = x2(1− x3) = . . . = xn−1(1− xn) = xn(1− x1) = a. (1)

(Proposed by Walther Janous and Gerhard Kirchner, Innsbruck)

Solution. Throughout the solution we will use the notation xn+1 = x1.
We prove that the set of possible values of a is

(

−∞,
1

4

]
⋃
{

1

4 cos2 kπ
n

; k ∈ N, 1 ≤ k <
n

2

}

.

In the case a ≤ 1
4

we can choose x1 such that x1(1− x1) = a and set x1 = x2 = . . . = xn. Hence we
will now suppose that a > 1

4
.

The system (1) gives the recurrence formula

xi+1 = ϕ(xi) = 1− a

xi

=
xi − a

xi

, i = 1, . . . , n.

The fractional linear transform ϕ can be interpreted as a projective transform of the real projective
line R ∪ {∞}; the map ϕ is an element of the group PGL2(R), represented by the linear transform

M =

(
1 −a

1 0

)

. (Note that detM 6= 0 since a 6= 0.) The transform ϕn can be represented by Mn. A

point [u, v] (written in homogenous coordinates) is a fixed point of this transform if and only if (u, v)T

is an eigenvector of Mn. Since the entries of Mn and the coordinates u, v are real, the corresponding
eigenvalue is real, too.

The characteristic polynomial of M is x2 − x+ a, which has no real root for a > 1
4
. So M has two

conjugate complex eigenvalues λ1.2 = 1
2

(
1 ±

√
4a− 1i

)
. The eigenvalues of Mn are λn

1,2, they are real

if and only if arg λ1,2 = ±kπ
n

with some integer k; this is equivalent with

±
√
4a− 1 = tan

kπ

n
,

a =
1

4

(
1 + tan2 kπ

n

)
=

1

4 cos2 kπ
n

.
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If arg λ1 =
kπ
n

then λn
1 = λn

2 , so the eigenvalues of Mn are equal. The eigenvalues of M are distinct,
so M and Mn have two linearly independent eigenvectors. Hence, Mn is a multiple of the identity. This
means that the projective transform ϕn is the identity; starting from an arbitrary point x1 ∈ R∪{∞},
the cycle x1, x2, . . . , xn closes at xn+1 = x1. There are only finitely many cycles x1, x2, . . . , xn containing
the point ∞; all other cycles are solutions for (1).

Remark. If we write xj = P + Q tan tj where P,Q and t1, . . . , tn are real numbers, the recurrence relation

re-writes as

(P +Q tan tj)(1− P −Q tan tj+1) = a

(1− P )Q tan tj − PQ tan tj+1 = a+ P (P − 1) +Q2 tan tj tan tj+1 (j = 1, 2, . . . , n).

In view of the identity tan(α−β) =
tanα− tan β

1 + tanα tan β
, it is reasonable to choose P = 1

2 , and Q =
√

a− 1
4 . Then

the recurrence leads to

tj − tj+1 ≡ arctan
√
4a− 1 (mod π).

Problem 5. Let c ≥ 1 be a real number. Let G be an abelian group and let A ⊂ G be a finite set
satisfying |A + A| ≤ c|A|, where X + Y := {x+ y | x ∈ X, y ∈ Y } and |Z| denotes the cardinality of
Z. Prove that

|A+ A + . . .+ A
︸ ︷︷ ︸

k times

| ≤ ck|A|

for every positive integer k. (Plünnecke’s inequality)
(Proposed by Przemyslaw Mazur, Jagiellonian University)

Solution. Let B be a nonempty subset of A for which the value of the expression c1 = |A+B|
|B|

is the
least possible. Note that c1 ≤ c since A is one of the possible choices of B.

Lemma 1. For any finite set D ⊂ G we have |A+B +D| ≤ c1|B +D|.
Proof. Apply induction on the cardinality of D. For |D| = 1 the Lemma is true by the definition of c1.
Suppose it is true for some D and let x 6∈ D. Let B1 = {y ∈ B | x+ y ∈ B +D}. Then B + (D ∪ {x})
decomposes into the union of two disjoint sets:

B + (D ∪ {x}) = (B +D) ∪
(
(B \B1) + {x}

)

and therefore |B + (D ∪ {x})| = |B +D|+ |B| − |B1|. Now we need to deal with the cardinality of the
set A + B + (D ∪ {x}). Writing A + B + (D ∪ {x}) = (A + B +D) ∪ (A + B + {x}) we count some
of the elements twice: for example if y ∈ B1, then A + {y} + {x} ⊂ (A + B + D) ∩ (A + B + {x}).
Therefore all the elements of the set A+B1 + {x} are counted twice and thus

|A+B + (D ∪ {x})| ≤ |A+B +D|+ |A+B + {x}| − |A+B1 + {x}| =
= |A+B +D|+ |A+B| − |A+B1| ≤ c1(|B +D| − |B| − |B1|) = c1|B + (D ∪ {x})|,

where the last inequality follows from the inductive hypothesis and the observation that |A+B|
|B|

= c1 ≤
|A+B1|
|B1|

(or B1 is the empty set). 2

Lemma 2. For every k ≥ 1 we have |A+ . . .+ A
︸ ︷︷ ︸

k times

+B| ≤ ck1|B|.

Proof. Induction on k. For k = 1 the statement is true by definition of c1. For greater k set D =
A+ . . .+ A
︸ ︷︷ ︸

k−1 times

in the previous lemma: |A+ . . .+ A
︸ ︷︷ ︸

k times

+B| ≤ c1|A+ . . .+ A
︸ ︷︷ ︸

k−1 times

+B| ≤ ck1|B|. 2

Now notice that
|A+ . . .+ A
︸ ︷︷ ︸

k times

| ≤ |A+ . . .+ A
︸ ︷︷ ︸

k times

+B| ≤ ck1|B| ≤ ck|A|.

Remark. The proof above due to Giorgios Petridis and can be found at http://gowers.wordpress.com/

2011/02/10/a-new-way-of-proving-sumset-estimates/
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