IMC 2012, Blagoevgrad, Bulgaria

Day 1, July 28, 2012

Problem 1. For every positive integer n, let p(n) denote the number of ways to express n as a sum of positive integers. For instance, p(4) = 5 because

$$4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.$$

Also define p(0) = 1.

Prove that p(n) - p(n-1) is the number of ways to express n as a sum of integers each of which is strictly greater than 1.

(10 points)

Problem 2. Let n be a fixed positive integer. Determine the smallest possible rank of an $n \times n$ matrix that has zeros along the main diagonal and strictly positive real numbers off the main diagonal.

(10 points)

Problem 3. Given an integer n > 1, let S_n be the group of permutations of the numbers $1, 2, \ldots, n$. Two players, A and B, play the following game. Taking turns, they select elements (one element at a time) from the group S_n . It is forbidden to select an element that has already been selected. The game ends when the selected elements generate the whole group S_n . The player who made the last move loses the game. The first move is made by A. Which player has a winning strategy?

(10 points)

Problem 4. Let $f \colon \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function that satisfies f'(t) > f(f(t)) for all $t \in \mathbb{R}$. Prove that $f(f(f(t))) \leq 0$ for all $t \geq 0$.

(10 points)

Problem 5. Let *a* be a rational number and let *n* be a positive integer. Prove that the polynomial $X^{2^n}(X+a)^{2^n}+1$ is irreducible in the ring $\mathbb{Q}[X]$ of polynomials with rational coefficients.

(10 points)