
IMC2011, Blagoevgrad, Bulgaria

Day 1, July 30, 2011

Problem 1. Let f : R → R be a continuous function. A point x is called a shadow point if there exists a point y ∈ R with
y > x such that f(y) > f(x). Let a < b be real numbers and suppose that

• all the points of the open interval I = (a, b) are shadow points;

• a and b are not shadow points.

Prove that
a) f(x) ≤ f(b) for all a < x < b;
b) f(a) = f(b).

(José Luis Dı́az-Barrero, Barcelona)

Solution. (a) We prove by contradiction. Suppose that exists a point c ∈ (a, b) such that f(c) > f(b).
By Weierstrass’ theorem, f has a maximal value m on [c, b]; this value is attained at some point d ∈ [c, b]. Since

f(d) = max
[c.b]

f ≥ f(c) > f(b), we have d 6= b, so d ∈ [c, b) ⊂ (a, b). The point d, lying in (a, b), is a shadow point, therefore

f(y) > f(d) for some y > d. From combining our inequalities we get f(y) > f(d) > f(b).
Case 1: y > b. Then f(y) > f(b) contradicts the assumption that b is not a shadow point.
Case 2: y ≤ b. Then y ∈ (d, b] ⊂ [c, b], therefore f(y) > f(d) = m = max

[c,b]
f ≥ f(y), contradiction again.

(b) Since a < b and a is not a shadow point, we have f(a) ≥ f(b).
By part (a), we already have f(x) ≤ f(b) for all x ∈ (a, b). By the continuity at a we have

f(a) = lim
x→a+0

f(x) ≤ lim
x→a+0

f(b) = f(b)

Hence we have both f(a) ≥ f(b) and f(a) ≤ f(b), so f(a) = f(b).

Problem 2. Does there exist a real 3 × 3 matrix A such that tr(A) = 0 and A2 + At = I? (tr(A) denotes the trace of A,
At is the transpose of A, and I is the identity matrix.)

(Moubinool Omarjee, Paris)

Solution. The answer is NO.
Suppose that tr(A) = 0 and A2 +At = I. Taking the transpose, we have

A = I − (A2)t = I − (At)2 = I − (I − A2)2 = 2A2 −A4,

A4 − 2A2 +A = 0.

The roots of the polynomial x4 − 2x2 + x = x(x− 1)(x2 + x− 1) are 0, 1, −1±
√
5

2 so these numbers can be the eigenvalues of

A; the eigenvalues of A2 can be 0, 1, 1±
√
5

2 .
By tr(A) = 0, the sum of the eigenvalues is 0, and by tr(A2) = tr(I−At) = 3 the sum of squares of the eigenvalues is 3.

It is easy to check that this two conditions cannot be satisfied simultaneously.

Problem 3. Let p be a prime number. Call a positive integer n interesting if

xn − 1 = (xp − x+ 1)f(x) + pg(x)

for some polynomials f and g with integer coefficients.
a) Prove that the number pp − 1 is interesting.
b) For which p is pp − 1 the minimal interesting number?

(Eugene Goryachko and Fedor Petrov, St. Petersburg)

Solution. (a) Let’s reformulate the property of being interesting: n is interesting if xn − 1 is divisible by xp − x+ 1 in the
ring of polynomials over Fp (the field of residues modulo p). All further congruences are modulo xp − x+ 1 in this ring. We

have xp ≡ x− 1, then xp2

= (xp)p ≡ (x− 1)p ≡ xp − 1 ≡ x− 2, xp3

= (xp2

)p ≡ (x− 2)p ≡ xp − 2p ≡ x− 2p − 1 ≡ x− 3 and
so on by Fermat’s little theorem, finally xpp

≡ x− p ≡ x,

x(xpp−1 − 1) ≡ 0.

Since the polynomials xp − x+ 1 and x are coprime, this implies xpp−1 − 1 ≡ 0.
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(b) We write

x1+p+p2+···+pp−1

= x · xp · xp2

· . . . · xpp−1

≡ x(x − 1)(x− 2) . . . (x − (p− 1)) = xp − x ≡ −1,

hence x2(1+p+p2+···+pp−1) ≡ 1 and a = 2(1 + p+ p2 + · · ·+ pp−1) is an interesting number.
If p > 3, then a = 2

p−1 (p
p − 1) < pp − 1, so we have an interesting number less than pp − 1. On the other hand, we show

that p = 2 and p = 3 do satisfy the condition. First notice that by gcd(xm − 1, xk − 1) = xgcd(m,k) − 1, for every fixed p the
greatest common divisors of interesting numbers is also an interesting number. Therefore the minimal interesting number
divides all interesting numbers. In particular, the minimal interesting number is a divisor of pp − 1.

For p = 2 we have pp − 1 = 3, so the minimal interesting number is 1 or 3. But x2 − x+ 1 does not divide x− 1, so 1 is
not interesting. Then the minimal interesting number is 3.

For p = 3 we have pp − 1 = 26 whose divisors are 1, 2, 13, 26. The numbers 1 and 2 are too small and x13 ≡ −1 6≡ +1 as
shown above, so none of 1,2 and 13 is interesting. So 26 is the minimal interesting number.

Hence, pp − 1 is the minimal interesting number if and only if p = 2 or p = 3.

Problem 4. Let A1, A2, . . . , An be finite, nonempty sets. Define the function

f(t) =
n
∑

k=1

∑

1≤i1<i2<...<ik≤n

(−1)k−1t|Ai1
∪Ai2

∪...∪Aik
|.

Prove that f is nondecreasing on [0, 1].

(|A| denotes the number of elements in A.)
(Levon Nurbekyan and Vardan Voskanyan, Yerevan)

Solution 1. Let Ω =
n
⋃

i=1

Ai. Consider a random subset X of Ω which chosen in the following way: for each x ∈ Ω, choose

the element x for the set X with probability t, independently from the other elements.
Then for any set C ⊂ Ω, we have

P (C ⊂ X) = t|C|.

By the inclusion-exclusion principle,

P
(

(A1 ⊂ X) or (A2 ⊂ X) or . . . or (An ⊂ X)
)

=

=

n
∑

k=1

∑

1≤i1<i2<...<ik≤n

(−1)k−1P
(

Ai1 ∪ Ai2 ∪ . . . ∪ Aik ⊂ X
)

=

=
n
∑

k=1

∑

1≤i1<i2<...<ik≤n

(−1)k−1t|Ai1
∪Ai2

∪...∪Aik
|.

The probability P
(

(A1 ⊂ X) or . . . or (An ⊂ X)
)

is a nondecreasing function of the probability t.

Problem 5. Let n be a positive integer and let V be a (2n − 1)-dimensional vector space over the two-element field.
Prove that for arbitrary vectors v1, . . . , v4n−1 ∈ V , there exists a sequence 1 ≤ i1 < . . . < i2n ≤ 4n− 1 of indices such that
vi1 + . . .+ vi2n = 0.

(Ilya Bogdanov, Moscow and Géza Kós, Budapest)

Solution. Let V = aff{v1, . . . , v4n−1}. The statement vi1 + · · ·+ vi2n = 0 is translation-invariant (i.e. replacing the vectors
by v1 − a, . . . , v4n−1 − a), so we may assume that 0 ∈ V . Let d = dimV .

Lemma. The vectors can be permuted in such a way that v1 + v2, v3 + v4, . . . , v2d−1 + v2d form a basis of V .

Proof. We prove by induction on d. If d = 0 or d = 1 then the statement is trivial.
First choose the vector v1 such a way that aff(v2, v3, . . . , v4n−1) = V ; this is possible since V is generated by some d+ 1

vectors and we have d+ 1 ≤ 2n < 4n− 1. Next, choose v2 such that v2 6= v1. (By d > 0, not all vectors are the same.)

Now let ℓ = {0, v1 + v2} and let V ′ = V/ℓ. For any w ∈ V , let w̃ = ℓ + w = {w,w + v1 + v2} be the class of the factor
space V ′ containing w. Apply the induction hypothesis to the vectors ṽ3, . . . , ˜v4n−1. Since dimV ′ = d − 1, the vectors can
permuted in such a way that ṽ3 + ṽ4, . . . , ˜v2d−1 + ˜v2d is a basis of V ′. Then v1 + v2, v3 + v4, . . . , v2d−1 + v2d is a basis of V .

Now we can assume that v1+ v2, v3+ v4, . . . , v2d−1+ v2d is a basis of V . The vector w = (v1+ v3+ · · ·+ v2d−1)+ (v2d+1+
v2d+2 + · · · + v2n+d) is the sum of 2n vectors, so w ∈ V . Hence, w + ε1(v1 + v2) + · · · + εd(v2d−1 + v2d) = 0 with some
ε1, . . . , εd ∈ F2, therefore

d
∑

i=1

(

(1− εi)v2i−1 + εiv2i

)

+

2n+d
∑

i=2d+1

vi = 0.

The left-hand side is the sum of 2n vectors.
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