IMC2011, Blagoevgrad, Bulgaria

Day 1, July 30, 2011

Problem 1. Let f: R — R be a continuous function. A point z is called a shadow point if there exists a point y € R with
y > x such that f(y) > f(x). Let a < b be real numbers and suppose that

e all the points of the open interval I = (a,b) are shadow points;
e ¢ and b are not shadow points.

Prove that
) flz) <

a (b) for all a < x < b;
b) fla) = f(b

f
f(0).
(José Luis Diaz-Barrero, Barcelona)

Solution. (a) We prove by contradiction. Suppose that exists a point ¢ € (a,b) such that f(c) > f(b).
By Weierstrass’ theorem, f has a maximal value m on [c,b]; this value is attained at some point d € [c,b]. Since
fld) = I[néﬁ(f > f(e) > f(b), we have d # b, so d € [c,b) C (a,b). The point d, lying in (a,b), is a shadow point, therefore

f(y) > f(d) for some y > d. From combining our inequalities we get f(y) > f(d) > f(b).
Case 1: y > b. Then f(y) > f(b) contradicts the assumption that b is not a shadow point.
Case 2: y <b. Then y € (d,b] C [e, b], therefore f(y) > f(d) =m = I[néﬁ(f > f(y), contradiction again.

(b) Since a < b and a is not a shadow point, we have f(a) > f(b).
By part (a), we already have f(z) < f(b) for all € (a,b). By the continuity at a we have

fla)= lim f(z) < lm f(b)=f(b)

r—a+0 r—a+0

Hence we have both f(a) > f(b) and f(a) < f(b), so f(a) = f(b).

Problem 2. Does there exist a real 3 x 3 matrix A such that tr(A) = 0 and A% + A* = I? (tr(A) denotes the trace of A,
A! is the transpose of A, and I is the identity matrix.)
(Moubinool Omarjee, Paris)

Solution. The answer is NO.
Suppose that tr(A) = 0 and A? + A* = I. Taking the transpose, we have

A=T1— (A =T (A2 =1 (I - A?)?=24% - A%,

A*—24%2+ A=0.

The roots of the polynomial z* — 222 + 2 = x(x — 1)(z? + 2 — 1) are 0, 1, %\/g so these numbers can be the eigenvalues of

A; the eigenvalues of A? can be 0, 1, 1i2‘/5.
By tr(A) = 0, the sum of the eigenvalues is 0, and by tr(A?) = tr(I — A*) = 3 the sum of squares of the eigenvalues is 3.

It is easy to check that this two conditions cannot be satisfied simultaneously.

Problem 3. Let p be a prime number. Call a positive integer n interesting if
" —1= (2" —z+1)f(z) + pg(x)

for some polynomials f and g with integer coefficients.
a) Prove that the number p? — 1 is interesting.
b) For which p is p? — 1 the minimal interesting number?
(Eugene Goryachko and Fedor Petrov, St. Petersburg)

Solution. (a) Let’s reformulate the property of being interesting: n is interesting if 2™ — 1 is divisible by 2P — 2 + 1 in the
ring of polynomials over IF,, (the field of residues modulo p). All further congruences are modulo #? — z + 1 in this ring. We

have 27 =z — 1, then a?’ = (2P)P = (z — 1)’ =aP — 1=z -2, 2 = (P P =(z—2)P =aP -2 =3 -2 — 1=z — 3 and
so on by Fermat’s little theorem, finally 2" =z — p = «,

(@ "t —1) = 0.

Since the polynomials z” — 4+ 1 and x are coprime, this implies 2P"~! — 1 = 0.



(b) We write
L S L = 2z—1)(z—-2)...(z—(p—1)) =aP —z = -1,

hence z21FPHP"+ 47" = 1 and a = 2(1 4+ p+ p*> + --- + pP~1) is an interesting number.
If p> 3, then a = %(pp —1) < pP — 1, so we have an interesting number less than p? — 1. On the other hand, we show

that p = 2 and p = 3 do satisfy the condition. First notice that by ged(z™ — 1,2F — 1) = x9¢d(mk) _ 1 for every fixed p the
greatest common divisors of interesting numbers is also an interesting number. Therefore the minimal interesting number
divides all interesting numbers. In particular, the minimal interesting number is a divisor of p?” — 1.

For p = 2 we have pP? — 1 = 3, so the minimal interesting number is 1 or 3. But 22 — 2 + 1 does not divide z — 1, so 1 is
not interesting. Then the minimal interesting number is 3.

For p = 3 we have pP? — 1 = 26 whose divisors are 1,2,13,26. The numbers 1 and 2 are too small and '3 = —1 # +1 as
shown above, so none of 1,2 and 13 is interesting. So 26 is the minimal interesting number.

Hence, p? — 1 is the minimal interesting number if and only if p =2 or p = 3.

Problem 4. Let A, Ao, ..., A, be finite, nonempty sets. Define the function

n
t) = }: Z (_1)k—1t\Ai1uAi2u...uAik|_
k=1 1<i;<iz<...<ip<n

Prove that f is nondecreasing on [0, 1].

(|A| denotes the number of elements in A.)
(Levon Nurbekyan and Vardan Voskanyan, Yerevan)

Solution 1. Let Q = U A;. Consider a random subset X of Q2 which chosen in the following way: for each x € €2, choose

the element x for the set X with probability ¢, independently from the other elements.
Then for any set C' C €2, we have
P(C c X)=tl°.

By the inclusion-exclusion principle,

P((Ay c X)or (A;CcX)or ... or (A, CX))=

— i Z (f1)k71p(Ai1 UA,U...U4;, CX)=

k=1 1<i1<i2<...<ix<n

n

k=1 1<i1<i2<...<ip<n

The probability P((4; C X) or ... or (4, C X)) is a nondecreasing function of the probability ¢.

Problem 5. Let n be a positive integer and let V' be a (2n — 1)-dimensional vector space over the two-element field.
Prove that for arbitrary vectors vi,...,v4n_1 € V, there exists a sequence 1 < i1 < ... < 19, < 4n — 1 of indices such that
Vi +---+Ui2n, =0.

(Ilya Bogdanov, Moscow and Géza Kdés, Budapest)

Solution. Let V = aff{v1,...,v4n,—1}. The statement v;, + - - - + v;,, = 0 is translation-invariant (i.e. replacing the vectors
by v1 — a,...,V4n—1 — a), SO we may assume that 0 € V. Let d = dim V.
Lemma. The vectors can be permuted in such a way that vy + va,v3 4+ vy, ..., V2g—1 + V24 form a basis of V.

Proof. We prove by induction on d. If d =0 or d = 1 then the statement is trivial.
First choose the vector v; such a way that aff(va, vs,...,v4,—1) = V; this is possible since V is generated by some d + 1
vectors and we have d + 1 < 2n < 4n — 1. Next, choose vo such that ve # v1. (By d > 0, not all vectors are the same.)

Now let £ = {0,v; +v2} and let V! = V/{. For any w € V, let @ = £ + w = {w,w + v1 + va2} be the class of the factor

space V' containing w. Apply the induction hypothesis to the vectors v, ..., v4,_1. Since dim V' = d — 1, the vectors can
permuted in such a way that v3 + ¥y, ..., v2g_1 + V34 is a basis of V/. Then vy + vo,v3 + v4,...,V24_1 + Vaq is a basis of V.
Now we can assume that vy + vg, v3+ vy, . . ., V24—1 + V24 is a basis of V. The vector w = (v1 +vs+ -+ -+ vag—1) + (v2g+1 +

Vadt2 + -+ + Vontq) is the sum of 2n vectors, so w € V. Hence, w + e1(v1 + v2) + -+ + €4(vadg—1 + v24) = 0 with some
€1y...,Eq € Fy, therefore

d 2n-+d
Z(l_EzUQz 1+5U21)+ Z v; = 0.
=1 1=2d+1

The left-hand side is the sum of 2n vectors.



