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Problem 1. (a) A sequence x1, x2, . . . of real numbers satisfies

xn+1 = xn cos xn for all n ≥ 1 .

Does it follow that this sequence converges for all initial values x1?

(b) A sequence y1, y2, . . . of real numbers satisfies

yn+1 = yn sin yn for all n ≥ 1 .

Does it follow that this sequence converges for all initial values y1?

Solution 1. (a) NO. For example, for x1 = π we have xn = (−1)n−1π, and the sequence is divergent.

(b) YES. Notice that |yn| is nonincreasing and hence converges to some number a ≥ 0.
If a = 0, then lim yn = 0 and we are done. If a > 0, then a = lim |yn+1| = lim |yn sin yn| = a·| sin a|,

so sin a = ±1 and a = (k + 1
2
)π for some nonnegative integer k.

Since the sequence |yn| is nonincreasing, there exists an index n0 such that (k + 1
2
)π ≤ |yn| <

(k + 1)π for all n > n0. Then all the numbers yn0+1, yn0+2, . . . lie in the union of the intervals
[

(k + 1
2
)π, (k + 1)π

)

and
(

− (k + 1)π,−(k + 1
2
)π
]

.
Depending on the parity of k, in one of the intervals

[

(k+ 1
2
)π, (k+1)π

)

and
(

−(k+1)π,−(k+ 1
2
)π
]

the values of the sine function is positive; denote this interval by I+. In the other interval the sine
function is negative; denote this interval by I−. If yn ∈ I− for some n > n0 then yn and yn+1 = yn sin yn

have opposite signs, so yn+1 ∈ I+. On the other hand, if If yn ∈ I+ for some n > n0 then yn and yn+1

have the same sign, so yn+1 ∈ I+. In both cases, yn+1 ∈ I+.
We obtained that the numbers yn0+2, yn0+3, . . . lie in I+, so they have the same sign. Since |yn| is

convergent, this implies that the sequence (yn) is convergent as well.

Solution 2 for part (b). Similarly to the first solution, |yn| → a for some real number a.
Notice that t · sin t = (−t) sin(−t) = |t| sin |t| for all real t, hence yn+1 = |yn| sin |yn| for all n ≥ 2.

Since the function t 7→ t sin t is continuous, yn+1 = |yn| sin |yn| → |a| sin |a| = a.

Problem 2. Let a0, a1, . . . , an be positive real numbers such that ak+1 − ak ≥ 1 for all k =
0, 1, . . . , n − 1. Prove that

1 +
1

a0

(

1 +
1

a1 − a0

)

· · ·

(

1 +
1

an − a0

)

≤

(

1 +
1

a0

)(

1 +
1

a1

)

· · ·

(

1 +
1

an

)

.

Solution. Apply induction on n. Considering the empty product as 1, we have equality for n = 0.

Now assume that the statement is true for some n and prove it for n+1. For n+1, the statement
can be written as the sum of the inequalities

1 +
1

a0

(

1 +
1

a1 − a0

)

· · ·

(

1 +
1

an − a0

)

≤

(

1 +
1

a0

)

· · ·

(

1 +
1

an

)

(which is the induction hypothesis) and

1

a0

(

1 +
1

a1 − a0

)

· · ·

(

1 +
1

an − a0

)

·
1

an+1 − a0
≤

(

1 +
1

a0

)

· · ·

(

1 +
1

an

)

·
1

an+1
. (1)

Hence, to complete the solution it is sufficient to prove (1).
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To prove (1), apply a second induction. For n = 0, we have to verify

1

a0
·

1

a1 − a0
≤

(

1 +
1

a0

)

1

a1
.

Multiplying by a0a1(a1 − a0), this is equivalent with

a1 ≤ (a0 + 1)(a1 − a0)

a0 ≤ a0a1 − a2
0

1 ≤ a1 − a0.

For the induction step it is sufficient that

(

1 +
1

an+1 − a0

)

·
an+1 − a0

an+2 − a0
≤

(

1 +
1

an+1

)

·
an+1

an+2
.

Multiplying by (an+2 − a0)an+2,

(an+1 − a0 + 1)an+2 ≤ (an+1 + 1)(an+2 − a0)

a0 ≤ a0an+2 − a0an+1

1 ≤ an+2 − an+1.

Remark 1. It is easy to check from the solution that equality holds if and only if ak+1 − ak = 1 for
all k.

Remark 2. The statement of the problem is a direct corollary of the identity

1 +
n
∑

i=0

(

1

xi

∏

j 6=i

(

1 +
1

xj − xi

)

)

=
n
∏

i=0

(

1 +
1

xi

)

.

Problem 3. Denote by Sn the group of permutations of the sequence (1, 2, . . . , n). Suppose that
G is a subgroup of Sn, such that for every π ∈ G \ {e} there exists a unique k ∈ {1, 2, . . . , n} for
which π(k) = k. (Here e is the unit element in the group Sn.) Show that this k is the same for all
π ∈ G \ {e}.

Solution. Let us consider the action of G on the set X = {1, . . . , n}. Let

Gx = { g ∈ G : g(x) = x} and Gx = { g(x) : g ∈ G}

be the stabilizer and the orbit of x ∈ X under this action, respectively. The condition of the problem
states that

G =
⋃

x∈X

Gx (1)

and
Gx ∩ Gy = {e} for all x 6= y. (2)

We need to prove that Gx = G for some x ∈ X.

Let Gx1, . . . , Gxk be the distinct orbits of the action of G. Then one can write (1) as

G =

k
⋃

i=1

⋃

y∈Gxi

Gy. (3)
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It is well known that

|Gx| =
|G|

|Gx|
. (4)

Also note that if y ∈ Gx then Gy = Gx and thus |Gy| = |Gx|. Therefore,

|Gx| =
|G|

|Gx|
=

|G|

|Gy|
= |Gy| for all y ∈ Gx. (5)

Combining (3), (2), (4) and (5) we get

|G| − 1 = |G \ {e}| =

∣

∣

∣

∣

∣

k
⋃

i=1

⋃

y∈Gxi

Gy \ {e}

∣

∣

∣

∣

∣

=

k
∑

i=1

|G|

|Gxi
|
(|Gxi

| − 1),

hence

1 −
1

|G|
=

k
∑

i=1

(

1 −
1

|Gxi
|

)

. (6)

If for some i, j ∈ {1, . . . , k} |Gxi
|, |Gxi

| ≥ 2 then

k
∑

i=1

(

1 −
1

|Gxi
|

)

≥

(

1 −
1

2

)

+

(

1 −
1

2

)

= 1 > 1 −
1

|G|

which contradicts with (6), thus we can assume that

|Gx1
| = . . . = |Gxk−1

| = 1.

Then from (6) we get |Gxk
| = |G|, hence Gxk

= G.

Problem 4. Let A be a symmetric m × m matrix over the two-element field all of whose diagonal
entries are zero. Prove that for every positive integer n each column of the matrix An has a zero
entry.

Solution. Denote by ek (1 ≤ k ≤ m) the m-dimensional vector over F2, whose k-th entry is 1 and all
the other elements are 0. Furthermore, let u be the vector whose all entries are 1. The k-th column
of An is Anek. So the statement can be written as Anek 6= u for all 1 ≤ k ≤ m and all n ≥ 1.

For every pair of vectors x = (x1, . . . , xm) and y = (y1, . . . , ym), define the bilinear form (x, y) =
xT y = x1y1 + ... + xmym. The product (x, y) has all basic properties of scalar products (except the
property that (x, x) = 0 implies x = 0). Moreover, we have (x, x) = (x, u) for every vector x ∈ F m

2 .
It is also easy to check that (w, Aw) = wTAw = 0 for all vectors w, since A is symmetric and its

diagonal elements are 0.

Lemma. Suppose that v ∈ F m
2 a vector such that Anv = u for some n ≥ 1. Then (v, v) = 0.

Proof. Apply induction on n. For odd values of n we prove the lemma directly. Let n = 2k + 1 and
w = Akv. Then

(v, v) = (v, u) = (v, Anv) = vT Anv = vTA2k+1v = (Akv, Ak+1v) = (w, Aw) = 0.

Now suppose that n is even, n = 2k, and the lemma is true for all smaller values of n. Let
w = Akv; then Akw = Anv = u and thus we have (w, w) = 0 by the induction hypothesis. Hence,

(v, v) = (v, u) = vT Anv = vT A2kv = (Akv)T (Akv) = (Akv, Akv) = (w, w) = 0.

The lemma is proved.
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Now suppose that Anek = u for some 1 ≤ k ≤ m and positive integer n. By the Lemma, we
should have (ek, ek) = 0. But this is impossible because (ek, ek) = 1 6= 0.

Problem 5. Suppose that for a function f : R → R and real numbers a < b one has f(x) = 0 for
all x ∈ (a, b). Prove that f(x) = 0 for all x ∈ R if

p−1
∑

k=0

f

(

y +
k

p

)

= 0

for every prime number p and every real number y.

Solution. Let N > 1 be some integer to be defined later, and consider set of real polynomials

JN =

{

c0 + c1x + . . . + cnx
n ∈ R[x]

∣

∣

∣
∀x ∈ R

n
∑

k=0

ckf
(

x +
k

N

)

= 0

}

.

Notice that 0 ∈ JN , any linear combinations of any elements in JN is in JN , and for every P (x) ∈ JN

we have xP (x) ∈ JN . Hence, JN is an ideal of the ring R[x].

By the problem’s conditions, for every prime divisors of N we have
xN − 1

xN/p − 1
∈ JN . Since R[x]

is a principal ideal domain (due to the Euclidean algorithm), the greatest common divisor of these

polynomials is an element of JN . The complex roots of the polynomial
xN − 1

xN/p − 1
are those Nth

roots of unity whose order does not divide N/p. The roots of the greatest common divisor is the
intersection of such sets; it can be seen that the intersection consist of the primitive Nth roots of
unity. Therefore,

gcd

{

xN − 1

xN/p − 1

∣

∣

∣
p
∣

∣N

}

= ΦN(x)

is the Nth cyclotomic polynomial. So ΦN ∈ JN , which polynomial has degree ϕ(N).

Now choose N in such a way that
ϕ(N)

N
< b−a. It is well-known that lim inf

N→∞

ϕ(N)

N
= 0, so there

exists such a value for N . Let ΦN(x) = a0 + a1x + . . . + aϕ(N)x
ϕ(N) where aϕ(N) = 1 and |a0| = 1.

Then, by the definition of JN , we have
ϕ(N)
∑

k=0

akf
(

x + k
N

)

= 0 for all x ∈ R.

If x ∈ [b, b + 1
N

), then

f(x) = −

ϕ(N)−1
∑

k=0

akf
(

x − ϕ(N)−k
N

)

.

On the right-hand side, all numbers x − ϕ(N)−k
N

lie in (a, b). Therefore the right-hand side is zero,
and f(x) = 0 for all x ∈ [b, b + 1

N
). It can be obtained similarly that f(x) = 0 for all x ∈ (a − 1

N
, a]

as well. Hence, f = 0 in the interval (a − 1
N

, b + 1
N

). Continuing in this fashion we see that f must
vanish everywhere.
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