IMC2010, Blagoevgrad, Bulgaria Day 2, July 27, 2010

Problem 1. (a) A sequence x_1, x_2, \ldots of real numbers satisfies

 $x_{n+1} = x_n \cos x_n$ for all $n \ge 1$.

Does it follow that this sequence converges for all initial values x_1 ?

(b) A sequence y_1, y_2, \ldots of real numbers satisfies

$$y_{n+1} = y_n \sin y_n$$
 for all $n \ge 1$.

Does it follow that this sequence converges for all initial values y_1 ?

Solution 1. (a) NO. For example, for $x_1 = \pi$ we have $x_n = (-1)^{n-1}\pi$, and the sequence is divergent.

(b) YES. Notice that $|y_n|$ is nonincreasing and hence converges to some number $a \ge 0$.

If a = 0, then $\lim y_n = 0$ and we are done. If a > 0, then $a = \lim |y_{n+1}| = \lim |y_n \sin y_n| = a \cdot |\sin a|$, so $\sin a = \pm 1$ and $a = (k + \frac{1}{2})\pi$ for some nonnegative integer k.

Since the sequence $|y_n|$ is nonincreasing, there exists an index n_0 such that $(k + \frac{1}{2})\pi \leq |y_n| < (k+1)\pi$ for all $n > n_0$. Then all the numbers $y_{n_0+1}, y_{n_0+2}, \ldots$ lie in the union of the intervals $[(k+\frac{1}{2})\pi, (k+1)\pi)$ and $(-(k+1)\pi, -(k+\frac{1}{2})\pi]$.

Depending on the parity of k, in one of the intervals $[(k+\frac{1}{2})\pi, (k+1)\pi)$ and $(-(k+1)\pi, -(k+\frac{1}{2})\pi]$ the values of the sine function is positive; denote this interval by I_+ . In the other interval the sine function is negative; denote this interval by I_- . If $y_n \in I_-$ for some $n > n_0$ then y_n and $y_{n+1} = y_n \sin y_n$ have opposite signs, so $y_{n+1} \in I_+$. On the other hand, if If $y_n \in I_+$ for some $n > n_0$ then y_n and y_{n+1} have the same sign, so $y_{n+1} \in I_+$. In both cases, $y_{n+1} \in I_+$.

We obtained that the numbers $y_{n_0+2}, y_{n_0+3}, \ldots$ lie in I_+ , so they have the same sign. Since $|y_n|$ is convergent, this implies that the sequence (y_n) is convergent as well.

Solution 2 for part (b). Similarly to the first solution, $|y_n| \to a$ for some real number a.

Notice that $t \cdot \sin t = (-t) \sin(-t) = |t| \sin |t|$ for all real t, hence $y_{n+1} = |y_n| \sin |y_n|$ for all $n \ge 2$. Since the function $t \mapsto t \sin t$ is continuous, $y_{n+1} = |y_n| \sin |y_n| \to |a| \sin |a| = a$.

Problem 2. Let a_0, a_1, \ldots, a_n be positive real numbers such that $a_{k+1} - a_k \ge 1$ for all $k = 0, 1, \ldots, n-1$. Prove that

$$1 + \frac{1}{a_0} \left(1 + \frac{1}{a_1 - a_0} \right) \cdots \left(1 + \frac{1}{a_n - a_0} \right) \le \left(1 + \frac{1}{a_0} \right) \left(1 + \frac{1}{a_1} \right) \cdots \left(1 + \frac{1}{a_n} \right).$$

Solution. Apply induction on *n*. Considering the empty product as 1, we have equality for n = 0.

Now assume that the statement is true for some n and prove it for n+1. For n+1, the statement can be written as the sum of the inequalities

$$1 + \frac{1}{a_0} \left(1 + \frac{1}{a_1 - a_0} \right) \cdots \left(1 + \frac{1}{a_n - a_0} \right) \le \left(1 + \frac{1}{a_0} \right) \cdots \left(1 + \frac{1}{a_n} \right)$$

(which is the induction hypothesis) and

$$\frac{1}{a_0} \left(1 + \frac{1}{a_1 - a_0} \right) \cdots \left(1 + \frac{1}{a_n - a_0} \right) \cdot \frac{1}{a_{n+1} - a_0} \le \left(1 + \frac{1}{a_0} \right) \cdots \left(1 + \frac{1}{a_n} \right) \cdot \frac{1}{a_{n+1}}.$$
 (1)

Hence, to complete the solution it is sufficient to prove (1).

To prove (1), apply a second induction. For n = 0, we have to verify

$$\frac{1}{a_0} \cdot \frac{1}{a_1 - a_0} \le \left(1 + \frac{1}{a_0}\right) \frac{1}{a_1}.$$

Multiplying by $a_0a_1(a_1 - a_0)$, this is equivalent with

$$a_1 \le (a_0 + 1)(a_1 - a_0)$$
$$a_0 \le a_0 a_1 - a_0^2$$
$$1 \le a_1 - a_0.$$

For the induction step it is sufficient that

$$\left(1 + \frac{1}{a_{n+1} - a_0}\right) \cdot \frac{a_{n+1} - a_0}{a_{n+2} - a_0} \le \left(1 + \frac{1}{a_{n+1}}\right) \cdot \frac{a_{n+1}}{a_{n+2}}.$$

Multiplying by $(a_{n+2} - a_0)a_{n+2}$,

$$(a_{n+1} - a_0 + 1)a_{n+2} \le (a_{n+1} + 1)(a_{n+2} - a_0)$$
$$a_0 \le a_0 a_{n+2} - a_0 a_{n+1}$$
$$1 \le a_{n+2} - a_{n+1}.$$

Remark 1. It is easy to check from the solution that equality holds if and only if $a_{k+1} - a_k = 1$ for all k.

Remark 2. The statement of the problem is a direct corollary of the identity

$$1 + \sum_{i=0}^{n} \left(\frac{1}{x_i} \prod_{j \neq i} \left(1 + \frac{1}{x_j - x_i} \right) \right) = \prod_{i=0}^{n} \left(1 + \frac{1}{x_i} \right).$$

Problem 3. Denote by S_n the group of permutations of the sequence (1, 2, ..., n). Suppose that G is a subgroup of S_n , such that for every $\pi \in G \setminus \{e\}$ there exists a unique $k \in \{1, 2, ..., n\}$ for which $\pi(k) = k$. (Here e is the unit element in the group S_n .) Show that this k is the same for all $\pi \in G \setminus \{e\}$.

Solution. Let us consider the action of G on the set $X = \{1, ..., n\}$. Let

$$G_x = \{ g \in G \colon g(x) = x \} \text{ and } Gx = \{ g(x) \colon g \in G \}$$

be the stabilizer and the orbit of $x \in X$ under this action, respectively. The condition of the problem states that

$$G = \bigcup_{x \in X} G_x \tag{1}$$

and

$$G_x \cap G_y = \{e\} \quad \text{for all} \quad x \neq y. \tag{2}$$

We need to prove that $G_x = G$ for some $x \in X$.

Let Gx_1, \ldots, Gx_k be the distinct orbits of the action of G. Then one can write (1) as

$$G = \bigcup_{i=1}^{k} \bigcup_{y \in Gx_i} G_y.$$
(3)

It is well known that

$$|Gx| = \frac{|G|}{|G_x|}.\tag{4}$$

Also note that if $y \in Gx$ then Gy = Gx and thus |Gy| = |Gx|. Therefore,

$$|G_x| = \frac{|G|}{|Gx|} = \frac{|G|}{|Gy|} = |G_y| \quad \text{for all} \quad y \in Gx.$$

$$\tag{5}$$

Combining (3), (2), (4) and (5) we get

$$|G| - 1 = |G \setminus \{e\}| = \left| \bigcup_{i=1}^{k} \bigcup_{y \in Gx_i} G_y \setminus \{e\} \right| = \sum_{i=1}^{k} \frac{|G|}{|G_{x_i}|} (|G_{x_i}| - 1),$$

hence

$$1 - \frac{1}{|G|} = \sum_{i=1}^{k} \left(1 - \frac{1}{|G_{x_i}|} \right).$$
(6)

If for some $i, j \in \{1, \ldots, k\} |G_{x_i}|, |G_{x_i}| \ge 2$ then

$$\sum_{i=1}^{k} \left(1 - \frac{1}{|G_{x_i}|} \right) \ge \left(1 - \frac{1}{2} \right) + \left(1 - \frac{1}{2} \right) = 1 > 1 - \frac{1}{|G|}$$

which contradicts with (6), thus we can assume that

$$|G_{x_1}| = \ldots = |G_{x_{k-1}}| = 1.$$

Then from (6) we get $|G_{x_k}| = |G|$, hence $G_{x_k} = G$.

Problem 4. Let A be a symmetric $m \times m$ matrix over the two-element field all of whose diagonal entries are zero. Prove that for every positive integer n each column of the matrix A^n has a zero entry.

Solution. Denote by e_k $(1 \le k \le m)$ the *m*-dimensional vector over F_2 , whose *k*-th entry is 1 and all the other elements are 0. Furthermore, let *u* be the vector whose all entries are 1. The *k*-th column of A^n is $A^n e_k$. So the statement can be written as $A^n e_k \ne u$ for all $1 \le k \le m$ and all $n \ge 1$.

For every pair of vectors $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_m)$, define the bilinear form $(x, y) = x^T y = x_1 y_1 + \ldots + x_m y_m$. The product (x, y) has all basic properties of scalar products (except the property that (x, x) = 0 implies x = 0). Moreover, we have (x, x) = (x, u) for every vector $x \in F_2^m$.

It is also easy to check that $(w, Aw) = w^T Aw = 0$ for all vectors w, since A is symmetric and its diagonal elements are 0.

Lemma. Suppose that $v \in F_2^m$ a vector such that $A^n v = u$ for some $n \ge 1$. Then (v, v) = 0. *Proof.* Apply induction on n. For odd values of n we prove the lemma directly. Let n = 2k + 1 and $w = A^k v$. Then

$$(v,v) = (v,u) = (v,A^n v) = v^T A^n v = v^T A^{2k+1} v = (A^k v, A^{k+1} v) = (w,Aw) = 0.$$

Now suppose that n is even, n = 2k, and the lemma is true for all smaller values of n. Let $w = A^k v$; then $A^k w = A^n v = u$ and thus we have (w, w) = 0 by the induction hypothesis. Hence,

$$(v,v) = (v,u) = v^T A^n v = v^T A^{2k} v = (A^k v)^T (A^k v) = (A^k v, A^k v) = (w,w) = 0$$

The lemma is proved.

Now suppose that $A^n e_k = u$ for some $1 \le k \le m$ and positive integer n. By the Lemma, we should have $(e_k, e_k) = 0$. But this is impossible because $(e_k, e_k) = 1 \ne 0$.

Problem 5. Suppose that for a function $f \colon \mathbb{R} \to \mathbb{R}$ and real numbers a < b one has f(x) = 0 for all $x \in (a, b)$. Prove that f(x) = 0 for all $x \in \mathbb{R}$ if

$$\sum_{k=0}^{p-1} f\left(y + \frac{k}{p}\right) = 0$$

for every prime number p and every real number y.

Solution. Let N > 1 be some integer to be defined later, and consider set of real polynomials

$$\mathcal{J}_N = \left\{ c_0 + c_1 x + \ldots + c_n x^n \in \mathbb{R}[x] \mid \forall x \in \mathbb{R} \quad \sum_{k=0}^n c_k f\left(x + \frac{k}{N}\right) = 0 \right\}.$$

Notice that $0 \in \mathcal{J}_N$, any linear combinations of any elements in \mathcal{J}_N is in \mathcal{J}_N , and for every $P(x) \in \mathcal{J}_N$ we have $xP(x) \in \mathcal{J}_N$. Hence, \mathcal{J}_N is an ideal of the ring $\mathbb{R}[x]$.

By the problem's conditions, for every prime divisors of N we have $\frac{x^N - 1}{x^{N/p} - 1} \in \mathcal{J}_N$. Since $\mathbb{R}[x]$ is a principal ideal domain (due to the Euclidean algorithm), the greatest common divisor of these polynomials is an element of \mathcal{J}_N . The complex roots of the polynomial $\frac{x^N - 1}{x^{N/p} - 1}$ are those Nth roots of unity whose order does not divide N/p. The roots of the greatest common divisor is the intersection of such sets; it can be seen that the intersection consist of the primitive Nth roots of unity. Therefore,

$$\gcd\left\{\begin{array}{c} \frac{x^N-1}{x^{N/p}-1} \mid p \mid N \end{array}\right\} = \Phi_N(x)$$

is the Nth cyclotomic polynomial. So $\Phi_N \in \mathcal{J}_N$, which polynomial has degree $\varphi(N)$.

Now choose N in such a way that $\frac{\varphi(N)}{N} < b-a$. It is well-known that $\liminf_{N\to\infty} \frac{\varphi(N)}{N} = 0$, so there exists such a value for N. Let $\Phi_N(x) = a_0 + a_1x + \ldots + a_{\varphi(N)}x^{\varphi(N)}$ where $a_{\varphi(N)} = 1$ and $|a_0| = 1$. Then, by the definition of \mathcal{J}_N , we have $\sum_{k=0}^{\varphi(N)} a_k f\left(x + \frac{k}{N}\right) = 0$ for all $x \in \mathbb{R}$.

If $x \in [b, b + \frac{1}{N})$, then

$$f(x) = -\sum_{k=0}^{\varphi(N)-1} a_k f\left(x - \frac{\varphi(N)-k}{N}\right).$$

On the right-hand side, all numbers $x - \frac{\varphi(N)-k}{N}$ lie in (a, b). Therefore the right-hand side is zero, and f(x) = 0 for all $x \in [b, b + \frac{1}{N})$. It can be obtained similarly that f(x) = 0 for all $x \in (a - \frac{1}{N}, a]$ as well. Hence, f = 0 in the interval $(a - \frac{1}{N}, b + \frac{1}{N})$. Continuing in this fashion we see that f must vanish everywhere.