IMC2010, Blagoevgrad, Bulgaria
Day 2, July 27, 2010

Problem 1. (a) A sequence w1, s, ... of real numbers satisfies
Tpi1 = Tpcosx, forall n>1.

Does it follow that this sequence converges for all initial values x;?

(b) A sequence y1, s, ... of real numbers satisfies
Ynt1 = Ypsiny, forall n>1.

Does it follow that this sequence converges for all initial values y,7

Solution 1. (a) NO. For example, for z; = 7 we have x,, = (—1)""!7, and the sequence is divergent.

(b) YES. Notice that |y,| is nonincreasing and hence converges to some number a > 0.

If a = 0, then limy,, = 0 and we are done. If a > 0, then @ = lim |y,,41| = lim |y, sin y,,| = a-| sin al,
sosina = +1 and a = (k + %)7? for some nonnegative integer k.

Since the sequence |y,| is nonincreasing, there exists an index ng such that (k + 3)7 < |y,| <
(k + 1)m for all n > ng. Then all the numbers Y, 41, Yng+2, - - lie in the union of the intervals
[(k+3)m, (k+ 1)m) and (— (k+ L)m, —(k + 1)x].

Depending on the parity of k, in one of the intervals [(k+3)m, (k+1)7) and (—(k+1)m, —(k-+3)7]
the values of the sine function is positive; denote this interval by I,. In the other interval the sine
function is negative; denote this interval by I_. If y,, € I_ for some n > ng then y,, and y,11 = y, siny,
have opposite signs, so y,+1 € Iy. On the other hand, if If y,, € I, for some n > ng then y, and y,, 1,
have the same sign, so 4,11 € I,. In both cases, y,.1 € ..

We obtained that the numbers 12, Yno+3, - - - lie in I, so they have the same sign. Since |y, | is
convergent, this implies that the sequence (y,) is convergent as well.

Solution 2 for part (b). Similarly to the first solution, |y,| — a for some real number a.
Notice that ¢ -sint = (—t) sin(—t) = |¢|sin |¢| for all real ¢, hence y, 1 = |y,|sin |y,| for all n > 2.
Since the function ¢t — tsint is continuous, ¥,4+1 = |y»| sin |y,| — |a|sin |a| = a.

Problem 2. Let ag,aq,...,a, be positive real numbers such that a1 —ap > 1 for all £k =
0,1,...,n — 1. Prove that

1 1 1 1 1 1
I o B GRS
QAo a; — Qo Ay — Qo QAo ay (7%

Solution. Apply induction on n. Considering the empty product as 1, we have equality for n = 0.

Now assume that the statement is true for some n and prove it for n+ 1. For n+ 1, the statement
can be written as the sum of the inequalities

1 1 1 1 1
Qo ay — Qo an — Qo Qo (7%

(which is the induction hypothesis) and

1 1 1 1 1 1 1
—(1+ 14 . <(14+—)---(1+—)- . (1)
Qo a1 — ag apn — Qo Ap+1 — Ao Qg Qn An1

Hence, to complete the solution it is sufficient to prove (1).
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To prove (1), apply a second induction. For n = 0, we have to verify

1 1 1 1
— < (14— |—.
Qg a1 — Qo Qg / ay

Multiplying by aga;(a; — ap), this is equivalent with

a1 < (CLO + 1)(&1 — ao)
ag < apa; — a%

1§a1—a0.

For the induction step it is sufficient that

1 a —a 1 a
<1 + ) . n+1 0 S <1 + ) . n+1 .
Apy1 — Ao Qpy2 — Ao Ant1 Apt2

Multiplying by (a0 — ag)anio,

(an+1 — ao + 1)anto < (ans1 + 1)(@ns2 — ag)
ag < Aolpy2 — Aolni1

1 S Ap42 — Ap41-

Remark 1. It is easy to check from the solution that equality holds if and only if ag,q — ax = 1 for
all k.

Remark 2. The statement of the problem is a direct corollary of the identity

1+i<%ﬂ<1+xix>> :ﬁ<1+%).

i=0 i J i=0

Problem 3. Denote by S, the group of permutations of the sequence (1,2,...,n). Suppose that
G is a subgroup of S, such that for every m € G \ {e} there exists a unique k& € {1,2,...,n} for
which (k) = k. (Here e is the unit element in the group S,.) Show that this £ is the same for all
T e G\ {e}.

Solution. Let us consider the action of G on the set X = {1,...,n}. Let

G,={9€G: g(x)=2} and Gz ={g(x): g€ G}
be the stabilizer and the orbit of x € X under this action, respectively. The condition of the problem

states that
G=JG. (1)

rzeX

and
G,NGy,={e} forall z#uy. (2)

We need to prove that G, = G for some = € X.
Let Gxy,...,Gxy be the distinct orbits of the action of G. Then one can write (1) as

¢=J U a6 (3)

i=1yeGz;
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It is well known that

|G|
|G| = = (4)
|G
Also note that if y € Gz then Gy = Gz and thus |Gy| = |Gz|. Therefore,
Gl _ 1G]
Gyl=——=—-=1G,| forall yeGz. 5

Combining (3), (2), (4) and (5) we get

J U é \{}' ZE (1G] — 1),

i=1yeGx;

Gl =1 =G\ {e}| =

hence
k

i=1

If for some 4,j € {1,...,k} |G4,|,|Gz,| > 2 then

()2 (1-3) ()=

i=1
which contradicts with (6), thus we can assume that

Gl = . = Gy | = 1
Then from (6) we get |G, | = |G|, hence G,, = G.

Problem 4. Let A be a symmetric m X m matrix over the two-element field all of whose diagonal
entries are zero. Prove that for every positive integer n each column of the matrix A™ has a zero
entry.

Solution. Denote by ¢ (1 < k < m) the m-dimensional vector over Fy, whose k-th entry is 1 and all
the other elements are 0. Furthermore, let u be the vector whose all entries are 1. The k-th column
of A™ is A™e. So the statement can be written as A"e, # u for all 1 < k <m and all n > 1.

For every pair of vectors z = (x1,...,2,) and y = (y1, ..., Ym), define the bilinear form (z,y) =
2Ty = 191 + ... + TYm. The product (z,y) has all basic properties of scalar products (except the
property that (z,x) = 0 implies = 0). Moreover, we have (z,x) = (x,u) for every vector = € Fj".

It is also easy to check that (w, Aw) = wT Aw = 0 for all vectors w, since A is symmetric and its
diagonal elements are 0.

Lemma. Suppose that v € F}* a vector such that A"v = u for some n > 1. Then (v,v) = 0.

Proof. Apply induction on n. For odd values of n we prove the lemma directly. Let n = 2k + 1 and
w = A*v. Then

(v,v) = (v,u) = (v, A") = vT A" = VT A? Ty = (AFv, A¥) = (w, Aw) = 0.

Now suppose that n is even, n = 2k, and the lemma is true for all smaller values of n. Let
w = A*v; then A*w = A" = u and thus we have (w,w) = 0 by the induction hypothesis. Hence,

(v,v) = (v,u) = vT A" = vT A%y = (A*)T (A*v) = (AP, AFv) = (w,w) = 0.

The lemma is proved.



Now suppose that A"e, = u for some 1 < k < m and positive integer n. By the Lemma, we
should have (e, e;) = 0. But this is impossible because (e, ex) = 1 # 0.

Problem 5. Suppose that for a function f: R — R and real numbers a < b one has f(z) = 0 for
all z € (a,b). Prove that f(z) =0 for all z € R if

p—1
k
f (y + —) =0
k=0 p

for every prime number p and every real number y.

Solution. Let N > 1 be some integer to be defined later, and consider set of real polynomials
In =1 co+azr+...+c2" € Rlz] ’ Vr e R icf(ijﬁ)—O
N=19 Cta ST Cp 2 i N~ .

Notice that 0 € Jy, any linear combinations of any elements in 7y is in Jy, and for every P(z) € Jy
we have 2P (z) € Jn. Hence, Jy is an ideal of the ring R|x].

By the problem’s conditions, for every prime divisors of N we have 1 € Jn. Since R[x]

;L'N/p —

is a principal ideal domain (due to the Euclidean algorithm), the greatest common divisor of these
N

polynomials is an element of Jy. The complex roots of the polynomial are those Nth

alNr —1
roots of unity whose order does not divide N/p. The roots of the greatest common divisor is the
intersection of such sets; it can be seen that the intersection consist of the primitive Nth roots of
unity. Therefore,

|
SR

is the Nth cyclotomic polynomial. So &y € Jy, which polynomial has degree p(N).

N N
Now choose N in such a way that % < b—a. It is well-known that li]{fn inf % = 0, so there
exists such a value for N. Let ®n(z) = ag + a17 + ... + ayn)z?™) where ayvy) = 1 and |ag| = 1.
@(N)
Then, by the definition of Jy, we have akf(:c + %) =0 for all x € R.
k=0
If z € [b,b+ +), then
e(N)-1
fla)== 3 acf(z—2F).
k=0
e(N)—k

On the right-hand side, all numbers » — =~ lie in (a,b). Therefore the right-hand side is zero,
and f(z) =0 for all z € [b,b+ +). It can be obtained similarly that f(z) = 0 for all z € (a — <, a]
as well. Hence, f = 0 in the interval (a — %, b+ %) Continuing in this fashion we see that f must

vanish everywhere.



