
is a Cauchy sequence in H. (This is the crucial observation.) Indeed, for m > n, the norm ‖ym − yn‖
may be computed by the above remark as

‖ym − yn‖2 =
d2

2

∥

∥

∥

∥

∥

(

1

m
− 1

n
, . . . ,

1

m
− 1

n
,

1

m
, . . . ,

1

m

)⊤
∥

∥

∥

∥

∥

2

Rm

=
d2

2

(

n(m − n)2

m2n2
+

m − n

m2

)

=
d2

2

(m − n)(m − n + n)

m2n
=

d2

2

m − n

mn
=

d2

2

(

1

n
− 1

m

)

→ 0, m, n → ∞.

By completeness of H, it follows that there exists a limit

y = lim
n→∞

yn ∈ H.

We claim that y sastisfies all conditions of the problem. For m > n > p, with n, p fixed, we compute

‖xn − ym‖2 =
d2

2

∥

∥

∥

∥

∥

(

− 1

m
, . . . ,− 1

m
, 1 − 1

m
,− 1

m
, . . . ,− 1

m

)⊤
∥

∥

∥

∥

∥

2

Rm

=
d2

2

[

m − 1

m2
+

(m − 1)2

m2

]

=
d2

2

m − 1

m
→ d2

2
, m → ∞,

showing that ‖xn − y‖ = d/
√

2, as well as

〈xn − ym, xp − ym〉 =
d2

2

〈

(

− 1

m
, . . . ,− 1

m
, . . . , 1 − 1

m
, . . . ,− 1

m

)⊤

,

(

− 1

m
, . . . , 1 − 1

m
, . . . ,− 1

m
, . . . ,− 1

m

)⊤
〉

Rm

=
d2

2

[

m − 2

m2
− 2

m

(

1 − 1

m

)]

= − d2

2m
→ 0, m → ∞,

showing that 〈xn − y, xp − y〉 = 0, so that
{√

2

d
(xn − y) : n ∈ N

}

is indeed an orthonormal system of vectors.
This completes the proof in the case when T = S, which we can always take if S is countable. If

it is not, let x′, x′′ be any two distinct points in S \T . Then applying the above procedure to the set

T ′ = {x′, x′′, x1, x2, . . . , xn, . . .}
it follows that

lim
n→∞

x′ + x′′ + x1 + x2 + · · ·+ xn

n + 2
= lim

n→∞

x1 + x2 + · · · + xn

n
= y

satisfies that
{√

2

d
(x′ − y),

√
2

d
(x′′ − y)

}

∪
{√

2

d
(xn − y) : n ∈ N

}

is still an orthonormal system.
This it true for any distinct x′, x′′ ∈ S \ T ; it follows that the entire system

{√
2

d
(x − y) : x ∈ S

}

is an orthonormal system of vectors in H, as required.
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IMC2008, Blagoevgrad, Bulgaria

Day 2, July 28, 2008

Problem 1. Let n, k be positive integers and suppose that the polynomial x2k − xk + 1 divides
x2n + xn + 1. Prove that x2k + xk + 1 divides x2n + xn + 1.

Solution. Let f(x) = x2n + xn + 1, g(x) = x2k − xk + 1, h(x) = x2k + xk + 1. The complex number
x1 = cos( π

3k
) + i sin( π

3k
) is a root of g(x).

Let α = πn
3k

. Since g(x) divides f(x), f(x1) = g(x1) = 0. So, 0 = x2n
1 + xn

1 + 1 = (cos(2α) +
i sin(2α)) + (cosα + i sin α) + 1 = 0, and (2 cosα + 1)(cosα + i sin α) = 0. Hence 2 cosα + 1 = 0, i.e.
α = ±2π

3
+ 2πc, where c ∈ Z.

Let x2 be a root of the polynomial h(x). Since h(x) = x3k−1

xk−1
, the roots of the polynomial h(x)

are distinct and they are x2 = cos 2πs
3k

+ i sin 2πs
3k

, where s = 3a ± 1, a ∈ Z. It is enough to prove that
f(x2) = 0. We have f(x2) = x2n

2 + xn
2 + 1 = (cos(4sα) + sin(4sα)) + (cos(2sα) + sin(2sα)) + 1 =

(2 cos(2sα) + 1)(cos(2sα) + i sin(2sα)) = 0 (since 2 cos(2sα) + 1 = 2 cos(2s(±2π
3

+ 2πc)) + 1 =
2 cos(4πs

3
) + 1 = 2 cos(4π

3
(3a ± 1)) + 1 = 0).

Problem 2. Two different ellipses are given. One focus of the first ellipse coincides with one focus
of the second ellipse. Prove that the ellipses have at most two points in common.

Solution. It is well known that an ellipse might be defined by a focus (a point) and a directrix (a
straight line), as a locus of points such that the distance to the focus divided by the distance to
directrix is equal to a given number e < 1. So, if a point X belongs to both ellipses with the same
focus F and directrices l1, l2, then e1 · l1X = FX = e2 · l2X (here we denote by l1X, l2X distances
between the corresponding line and the point X). The equation e1 · l1X = e2 · l2X defines two lines,
whose equations are linear combinations with coefficients e1,±e2 of the normalized equations of lines
l1, l2 but of those two only one is relevant, since X and F should lie on the same side of each directrix.
So, we have that all possible points lie on one line. The intersection of a line and an ellipse consists
of at most two points.

Problem 3. Let n be a positive integer. Prove that 2n−1 divides

∑

0≤k<n/2

(

n

2k + 1

)

5k.

Solution. As is known, the Fibonacci numbers Fn can be expressed as Fn = 1√
5

((

1+
√

5

2

)n

−
(

1−
√

5

2

)n)

.

Expanding this expression, we obtain that Fn = 1

2n−1

(

(

n
1

)

+
(

n
3

)

5 + ... +
(

n
l

)

5
l−1

2

)

, where l is the

greatest odd number such that l ≤ n and s = l−1

2
≤ n

2
.

So, Fn = 1

2n−1

s
∑

k=0

(

n
2k+1

)

5k, which implies that 2n−1 divides
∑

0≤k<n/2

(

n
2k+1

)

5k.

Problem 4. Let Z[x] be the ring of polynomials with integer coefficients, and let f(x), g(x) ∈ Z[x] be
nonconstant polynomials such that g(x) divides f(x) in Z[x]. Prove that if the polynomial f(x)−2008
has at least 81 distinct integer roots, then the degree of g(x) is greater than 5.

Solution. Let f(x) = g(x)h(x) where h(x) is a polynomial with integer coefficients.
Let a1, . . . , a81 be distinct integer roots of the polynomial f(x)−2008. Then f(ai) = g(ai)h(ai) =

2008 for i = 1, . . . , 81, Hence, g(a1), . . . , g(a81) are integer divisors of 2008.
Since 2008 = 23·251 (2, 251 are primes) then 2008 has exactly 16 distinct integer divisors (including

the negative divisors as well). By the pigeonhole principle, there are at least 6 equal numbers among
g(a1), . . . , g(a81) (because 81 > 16 · 5). For example, g(a1) = g(a2) = . . . = g(a6) = c. So g(x) − c is
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a nonconstant polynomial which has at least 6 distinct roots (namely a1, . . . , a6). Then the degree
of the polynomial g(x) − c is at least 6.

Problem 5. Let n be a positive integer, and consider the matrix A = (aij)1≤i,j≤n, where

aij =

{

1 if i + j is a prime number,

0 otherwise.

Prove that | det A| = k2 for some integer k.

Solution. Call a square matrix of type (B), if it is of the form



















0 b12 0 . . . b1,2k−2 0
b21 0 b23 . . . 0 b2,2k−1

0 b32 0 . . . b3,2k−2 0
...

...
...

. . .
...

...
b2k−2,1 0 b2k−2,3 . . . 0 b2k−2,2k−1

0 b2k−1,2 0 . . . b2k−1,2k−2 0



















.

Note that every matrix of this form has determinant zero, because it has k columns spanning a vector
space of dimension at most k − 1.

Call a square matrix of type (C), if it is of the form

C ′ =























0 c11 0 c12 . . . 0 c1,k

c11 0 c12 0 . . . c1,k 0
0 c21 0 c22 . . . 0 c2,k

c21 0 c22 0 . . . c2,k 0
...

...
...

...
...

...
...

0 ck,1 0 ck,2 . . . 0 ck,k

ck,1 0 ck,2 0 . . . ck,k 0























By permutations of rows and columns, we see that

| detC ′| =

∣

∣

∣

∣

det

(

C 0
0 C

)∣

∣

∣

∣

= | det C|2,

where C denotes the k × k-matrix with coefficients ci,j. Therefore, the determinant of any matrix of
type (C) is a perfect square (up to a sign).

Now let X ′ be the matrix obtained from A by replacing the first row by
(

1 0 0 . . . 0
)

, and
let Y be the matrix obtained from A by replacing the entry a11 by 0. By multi-linearity of the
determinant, det(A) = det(X ′) + det(Y ). Note that X ′ can be written as

X ′ =

(

1 0
v X

)

for some (n − 1) × (n − 1)-matrix X and some column vector v. Then det(A) = det(X) + det(Y ).
Now consider two cases. If n is odd, then X is of type (C), and Y is of type (B). Therefore,
| det(A)| = | det(X)| is a perfect square. If n is even, then X is of type (B), and Y is of type (C);
hence | det(A)| = | det(Y )| is a perfect square.

The set of primes can be replaced by any subset of {2} ∪ {3, 5, 7, 9, 11, . . .}.
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Problem 6. Let H be an infinite-dimensional real Hilbert space, let d > 0, and suppose that S is a
set of points (not necessarily countable) in H such that the distance between any two distinct points
in S is equal to d. Show that there is a point y ∈ H such that

{√
2

d
(x − y) : x ∈ S

}

is an orthonormal system of vectors in H.

Solution. It is clear that, if B is an orthonormal system in a Hilbert space H, then {(d/
√

2)e : e ∈ B}
is a set of points in H, any two of which are at distance d apart. We need to show that every set S
of equidistant points is a translate of such a set.

We begin by noting that, if x1, x2, x3, x4 ∈ S are four distinct points, then

〈x2 − x1, x2 − x1〉 = d2,

〈x2 − x1, x3 − x1〉 =
1

2

(

‖x2 − x1‖2 + ‖x3 − x1‖2 − ‖x2 − x3‖2
)

=
1

2
d2,

〈x2 − x1, x4 − x3〉 = 〈x2 − x1, x4 − x1〉 − 〈x2 − x1, x3 − x1〉 =
1

2
d2 − 1

2
d2 = 0.

This shows that scalar products among vectors which are finite linear combinations of the form

λ1x1 + λ2x2 + · · · + λnxn,

where x1, x2, . . . , xn are distinct points in S and λ1, λ2, . . . , λn are integers with λ1 +λ2 + · · ·+λn = 0,
are universal across all such sets S in all Hilbert spaces H; in particular, we may conveniently evaluate
them using examples of our choosing, such as the canonical example above in R

n. In fact this property
trivially follows also when coefficients λi are rational, and hence by continuity any real numbers with
sum 0.

If S = {x1, x2, . . . , xn} is a finite set, we form

x =
1

n
(x1 + x2 + · · · + xn) ,

pick a non-zero vector z ∈ [Span(x1 − x, x2 − x, . . . , xn − x)]⊥ and seek y in the form y = x + λz for
a suitable λ ∈ R. We find that

〈x1 − y, x2 − y〉 = 〈x1 − x − λz, x2 − x − λz〉 = 〈x1 − x, x2 − x〉 + λ2‖z‖2.

〈x1 − x, x2 − x〉 may be computed by our remark above as

〈x1 − x, x2 − x〉 =
d2

2

〈

(

1

n
− 1,

1

n
,
1

n
, . . . ,

1

n

)⊤

,

(

1

n
,
1

n
− 1,

1

n
, . . . ,

1

n

)⊤
〉

Rn

=
d2

2

(

2

n

(

1

n
− 1

)

+
n − 2

n2

)

= − d2

2n
.

So the choice λ =
d√

2n‖z‖
will make all vectors

√
2

d
(xi − y) orthogonal to each other; it is easily

checked as above that they will also be of length one.
Let now S be an infinite set. Pick an infinite sequence T = {x1, x2, . . . , xn, . . .} of distinct points

in S. We claim that the sequence

yn =
1

n
(x1 + x2 + · · · + xn)
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