
Problem 6. For a permutation σ = (i1, i2, ..., in) of (1, 2, ..., n) define D(σ) =
n
∑

k=1

|ik − k|. Let Q(n, d) be

the number of permutations σ of (1, 2, ..., n) with d = D(σ). Prove that Q(n, d) is even for d ≥ 2n.

Solution. Consider the n× n determinant
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where the ij-th entry is x|i−j|. From the definition of the determinant we get

∆(x) =
∑

(i1,...,in)∈Sn

(−1)inv(i1,...,in)xD(i1,...,in)

where Sn is the set of all permutations of (1, 2, ..., n) and inv(i1, ..., in) denotes the number of inversions in
the sequence (i1, ..., in). So Q(n, d) has the same parity as the coefficient of xd in ∆(x).

It remains to evaluate ∆(x). In order to eliminate the entries below the diagonal, subtract the (n−1)-th
row, multiplied by x, from the n-th row. Then subtract the (n − 2)-th row, multiplied by x, from the
(n− 1)-th and so on. Finally, subtract the first row, multiplied by x, from the second row.
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xn−2 xn−3 . . . 1 x
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1 x . . . xn−2 xn−1

0 1 − x2 . . . xn−3 − xn−1 xn−2 − xn
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0 0 . . . 1 − x2 x− x3

0 0 . . . 0 1 − x2
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= (1 − x2)n−1.

For d ≥ 2n, the coefficient of xd is 0 so Q(n, d) is even.
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IMC2008, Blagoevgrad, Bulgaria

Day 1, July 27, 2008

Problem 1. Find all continuous functions f : R → R such that f(x)− f(y) is rational for all reals x and
y such that x− y is rational.

Solution. We prove that f(x) = ax + b where a ∈ Q and b ∈ R. These functions obviously satify the
conditions.

Suppose that a function f(x) fulfills the required properties. For an arbitrary rational q, consider the
function gq(x) = f(x+q)−f(x). This is a continuous function which attains only rational values, therefore
gq is constant.

Set a = f(1) − f(0) and b = f(0). Let n be an arbitrary positive integer and let r = f(1/n) − f(0).
Since f(x+ 1/n) − f(x) = f(1/n) − f(0) = r for all x, we have

f(k/n) − f(0) = (f(1/n) − f(0)) + (f(2/n) − f(1/n)) + . . .+ (f(k/n) − f((k − 1)/n) = kr

and

f(−k/n) − f(0) = −(f(0) − f(−1/n)) − (f(−1/n) − f(−2/n)) − . . .− (f(−(k − 1)/n) − f(−k/n) = −kr

for k ≥ 1. In the case k = n we get a = f(1)− f(0) = nr, so r = a/n. Hence, f(k/n)− f(0) = kr = ak/n
and then f(k/n) = a · k/n+ b for all integers k and n > 0.

So, we have f(x) = ax+ b for all rational x. Since the function f is continous and the rational numbers
form a dense subset of R, the same holds for all real x.

Problem 2. Denote by V the real vector space of all real polynomials in one variable, and let P : V → R

be a linear map. Suppose that for all f, g ∈ V with P (fg) = 0 we have P (f) = 0 or P (g) = 0. Prove that
there exist real numbers x0, c such that P (f) = c f(x0) for all f ∈ V .

Solution. We can assume that P 6= 0.
Let f ∈ V be such that P (f) 6= 0. Then P (f 2) 6= 0, and therefore P (f 2) = aP (f) for some non-zero

real a. Then 0 = P (f 2 − af) = P (f(f − a)) implies P (f − a) = 0, so we get P (a) 6= 0. By rescaling, we
can assume that P (1) = 1. Now P (X + b) = 0 for b = −P (X). Replacing P by P̂ given as

P̂ (f(X)) = P (f(X + b))

we can assume that P (X) = 0.
Now we are going to prove that P (Xk) = 0 for all k ≥ 1. Suppose this is true for all k < n. We know

that P (Xn + e) = 0 for e = −P (Xn). From the induction hypothesis we get

P
(

(X + e)(X + 1)n−1
)

= P (Xn + e) = 0,

and therefore P (X + e) = 0 (since P (X + 1) = 1 6= 0). Hence e = 0 and P (Xn) = 0, which completes the
inductive step. From P (1) = 1 and P (Xk) = 0 for k ≥ 1 we immediately get P (f) = f(0) for all f ∈ V .
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Problem 3. Let p be a polynomial with integer coefficients and let a1 < a2 < . . . < ak be integers.

a) Prove that there exists a ∈ Z such that p(ai) divides p(a) for all i = 1, 2, . . . , k.

b) Does there exist an a ∈ Z such that the product p(a1) · p(a2) · . . . · p(ak) divides p(a)?

Solution. The theorem is obvious if p(ai) = 0 for some i, so assume that all p(ai) are nonzero and pairwise
different.

There exist numbers s, t such that s|p(a1), t|p(a2), st = lcm(p(a1), p(a2)) and gcd(s, t) = 1.
As s, t are relatively prime numbers, there exist m,n ∈ Z such that a1 + sn = a2 + tm =: b2. Obviously

s|p(a1 + sn) − p(a1) and t|p(a2 + tm) − p(a2), so st|p(b2).
Similarly one obtains b3 such that p(a3)|p(b3) and p(b2)|p(b3) thus also p(a1)|p(b3) and p(a2)|p(b3).
Reasoning inductively we obtain the existence of a = bk as required.
The polynomial p(x) = 2x2 + 2 shows that the second part of the problem is not true, as p(0) = 2,

p(1) = 4 but no value of p(a) is divisible by 8 for integer a.

Remark. One can assume that the p(ai) are nonzero and ask for a such that p(a) is a nonzero mul-
tiple of all p(ai). In the solution above, it can happen that p(a) = 0. But every number p(a +
np(a1)p(a2) . . . p(ak)) is also divisible by every p(ai), since the polynomial is nonzero, there exists n such
that p(a+ np(a1)p(a2) . . . p(ak)) satisfies the modified thesis.

Problem 4. We say a triple (a1, a2, a3) of nonnegative reals is better than another triple (b1, b2, b3) if two

out of the three following inequalities a1 > b1, a2 > b2, a3 > b3 are satisfied. We call a triple (x, y, z)
special if x, y, z are nonnegative and x+ y + z = 1. Find all natural numbers n for which there is a set S
of n special triples such that for any given special triple we can find at least one better triple in S.

Solution. The answer is n > 4.
Consider the following set of special triples:

(

0,
8

15
,

7

15

)

,

(

2

5
, 0,

3

5

)

,

(

3

5
,
2

5
, 0

)

,

(

2

15
,
11

15
,

2

15

)

.

We will prove that any special triple (x, y, z) is worse than one of these (triple a is worse than triple b if
triple b is better than triple a). We suppose that some special triple (x, y, z) is actually not worse than the
first three of the triples from the given set, derive some conditions on x, y, z and prove that, under these
conditions, (x, y, z) is worse than the fourth triple from the set.

Triple (x, y, z) is not worse than
(

0, 8
15
, 7

15

)

means that y >
8
15

or z >
7
15

. Triple (x, y, z) is not worse
than

(

2
5
, 0, 3

5

)

— x >
2
5

or z >
3
5
. Triple (x, y, z) is not worse than

(

3
5
, 2

5
, 0

)

— x >
3
5

or y >
2
5
. Since

x + y + z = 1, then it is impossible that all inequalities x >
2
5
, y >

2
5

and z >
7
15

are true. Suppose that
x < 2

5
, then y >

2
5

and z >
3
5
. Using x + y + z = 1 and x > 0 we get x = 0, y = 2

5
, z = 3

5
. We obtain

the triple
(

0, 2
5
, 3

5

)

which is worse than
(

2
15
, 11

15
, 2

15

)

. Suppose that y < 2
5
, then x >

3
5

and z >
7
15

and this
is a contradiction to the admissibility of (x, y, z). Suppose that z < 7

15
, then x >

2
5

and y >
8
15

. We get
(by admissibility, again) that z 6

1
15

and y 6
3
5
. The last inequalities imply that

(

2
15
, 11

15
, 2

15

)

is better than
(x, y, z).

We will prove that for any given set of three special triples one can find a special triple which is not
worse than any triple from the set. Suppose we have a set S of three special triples

(x1, y1, z1), (x2, y2, z2), (x3, y3, z3).

Denote a(S) = min(x1, x2, x3), b(S) = min(y1, y2, y3), c(S) = min(z1, z2, z3). It is easy to check that S1:
(

x1 − a

1 − a− b− c
,

y1 − b

1 − a− b− c
,

z1 − c

1 − a− b− c

)

(

x2 − a

1 − a− b− c
,

y2 − b

1 − a− b− c
,

z2 − c

1 − a− b− c

)

(

x3 − a

1 − a− b− c
,

y3 − b

1 − a− b− c
,

z3 − c

1 − a− b− c

)
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is a set of three special triples also (we may suppose that a+ b+ c < 1, because otherwise all three triples
are equal and our statement is trivial).

If there is a special triple (x, y, z) which is not worse than any triple from S1, then the triple

((1 − a− b− c)x+ a, (1 − a− b− c)y + b, (1 − a− b− c)z + c)

is special and not worse than any triple from S. We also have a(S1) = b(S1) = c(S1) = 0, so we may
suppose that the same holds for our starting set S.

Suppose that one element of S has two entries equal to 0.
Note that one of the two remaining triples from S is not worse than the other. This triple is also not

worse than all triples from S because any special triple is not worse than itself and the triple with two
zeroes.

So we have a = b = c = 0 but we may suppose that all triples from S contain at most one zero. By
transposing triples and elements in triples (elements in all triples must be transposed simultaneously) we
may achieve the following situation x1 = y2 = z3 = 0 and x2 > x3. If z2 > z1, then the second triple
(x2, 0, z2) is not worse than the other two triples from S. So we may assume that z1 > z2. If y1 > y3,
then the first triple is not worse than the second and the third and we assume y3 > y1. Consider the
three pairs of numbers x2, y1; z1, x3; y3, z2. The sum of all these numbers is three and consequently the
sum of the numbers in one of the pairs is less than or equal to one. If it is the first pair then the triple
(x2, 1 − x2, 0) is not worse than all triples from S, for the second we may take (1 − z1, 0, z1) and for the
third — (0, y3, 1 − y3). So we found a desirable special triple for any given S.

Problem 5. Does there exist a finite group G with a normal subgroup H such that |AutH| > |AutG|?

Solution. Yes. Let H be the commutative group H = F3
2, where F2

∼= Z/2Z is the field with two elements.
The group of automorphisms of H is the general linear group GL3F2; it has

(8 − 1) · (8 − 2) · (8 − 4) = 7 · 6 · 4 = 168

elements. One of them is the shift operator φ : (x1, x2, x3) 7→ (x2, x3, x1).
Now let T = {a0, a1, a2} be a group of order 3 (written multiplicatively); it acts on H by τ(a) = φ. Let

G be the semidirect product G = H ⋊τ T . In other words, G is the group of 24 elements

G = {bai : b ∈ H, i ∈ (Z/3Z)}, ab = φ(b)a.

G has one element e of order 1 and seven elements b, b ∈ H , b 6= e of order 2.
If g = ba, we find that g2 = baba = bφ(b)a2 6= e, and that

g3 = bφ(b)a2ba = bφ(b)aφ(b)a2 = bφ(b)φ2(b)a3 = ψ(b),

where the homomorphism ψ : H → H is defined as ψ : (x1, x2, x3) 7→ (x1 +x2 +x3)(1, 1, 1). It is clear that
g3 = ψ(b) = e for 4 elements b ∈ H , while g6 = ψ2(b) = e for all b ∈ H .

We see that G has 8 elements of order 3, namely ba and ba2 with b ∈ Kerψ, and 8 elements of order 6,
namely ba and ba2 with b 6∈ Kerψ. That accounts for orders of all elements of G.

Let b0 ∈ H \Kerψ be arbitrary; it is easy to see that G is generated by b0 and a. As every automorphism
of G is fully determined by its action on b0 and a, it follows that G has no more than

7 · 8 = 56

automorphisms.

Remark. G and H can be equivalently presented as subgroups of S6, namely as H = 〈(12), (34), (56)〉 and
G = 〈(135)(246), (12)〉.
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