IMC2007, Blagoevgrad, Bulgaria Day 2, August 6, 2007

Problem 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose that for any c > 0, the graph of f can be moved to the graph of cf using only a translation or a rotation. Does this imply that f(x) = ax + b for some real numbers a and b?

Solution. No. The function $f(x) = e^x$ also has this property since $ce^x = e^{x + \log c}$.

Problem 2. Let x, y, and z be integers such that $S = x^4 + y^4 + z^4$ is divisible by 29. Show that S is divisible by 29⁴.

Solution. We claim that 29 | x, y, z. Then, $x^4 + y^4 + z^4$ is clearly divisible by 29^4 .

Assume, to the contrary, that 29 does not divide all of the numbers x, y, z. Without loss of generality, we can suppose that $29 \nmid x$. Since the residue classes modulo 29 form a field, there is some $w \in \mathbb{Z}$ such that $xw \equiv 1 \pmod{29}$. Then, $(xw)^4 + (yw)^4 + (zw)^4$ is also divisible by 29. So we can assume that $x \equiv 1 \pmod{29}$.

Thus, we need to show that $y^4 + z^4 \equiv -1 \pmod{29}$, i.e. $y^4 \equiv -1 - z^4 \pmod{29}$, is impossible. There are only eight fourth powers modulo 29,

The differences $-1 - z^4$ are congruent to 28, 27, 21, 12, 8, 5, 4, and 3. None of these residue classes is listed among the fourth powers.

Problem 3. Let C be a nonempty closed bounded subset of the real line and $f : C \to C$ be a nondecreasing continuous function. Show that there exists a point $p \in C$ such that f(p) = p.

(A set is closed if its complement is a union of open intervals. A function g is nondecreasing if $g(x) \leq g(y)$ for all $x \leq y$.)

Solution. Suppose $f(x) \neq x$ for all $x \in C$. Let [a, b] be the smallest closed interval that contains C. Since C is closed, $a, b \in C$. By our hypothesis f(a) > a and f(b) < b. Let $p = \sup\{x \in C : f(x) > x\}$. Since C is closed and f is continuous, $f(p) \ge p$, so f(p) > p. For all x > p, $x \in C$ we have f(x) < x. Therefore f(f(p)) < f(p) contrary to the fact that f is non-decreasing.

Problem 4. Let n > 1 be an odd positive integer and $A = (a_{ij})_{i,j=1...n}$ be the $n \times n$ matrix with

$$a_{ij} = \begin{cases} 2 & \text{if } i = j \\ 1 & \text{if } i - j \equiv \pm 2 \pmod{n} \\ 0 & \text{otherwise.} \end{cases}$$

Find $\det A$.

Solution. Notice that $A = B^2$, with $b_{ij} = \begin{cases} 1 & \text{if } i - j \equiv \pm 1 \pmod{n} \\ 0 & \text{otherwise} \end{cases}$. So it is sufficient to find det B.

To find det B, expand the determinant with respect to the first row, and then expad both terms with respect to the first column.

$$\det B = \begin{pmatrix} 0 & 1 & & & & 1 \\ 1 & 0 & 1 & & & \\ & 1 & 0 & 1 & & \\ & 1 & 0 & 1 & & \\ & & 1 & 0 & 1 \\ & & & 1 & 0 & 1 \\ 1 & & & & 1 & 0 \\ 1 & & & & & 1 & 0 \\ \end{pmatrix} = - \begin{pmatrix} 1 & 1 & & & \\ 0 & 1 & & \\ & 1 & 0 & 1 \\ 1 & & & & & 1 & 0 \\ \end{pmatrix} + \begin{pmatrix} 1 & 0 & 1 & & \\ 1 & 0 & 1 & & \\ 1 & & & & & 1 \\ 1 & & & & & 1 \\ \end{pmatrix} \\ = - \begin{pmatrix} \begin{pmatrix} 0 & 1 & & & \\ 1 & \ddots & \ddots & & \\ & 1 & 0 & 1 \\ & 1 & \ddots & \ddots & \\ & \ddots & 0 & 1 \\ & 1 & 0 & 1 \\ & & & 1 & 0 \\ \end{pmatrix} + \begin{pmatrix} 1 & 0 & 1 & & \\ 1 & 0 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & 0 & 1 \\ & & & & 1 & 0 \\ \end{pmatrix} + \begin{pmatrix} 1 & 0 & 1 & & \\ 1 & 0 & 1 & & \\ 1 & 0 & 1 & & \\ & & & & 1 & 0 \\ & & & & & 1 & 0 \\ \end{pmatrix} = -(0-1) + (1-0) = 2,$$

since the second and the third matrices are lower/upper triangular, while in the first and the fourth matrices we have $\operatorname{row}_1 - \operatorname{row}_3 + \operatorname{row}_5 - \cdots \pm \operatorname{row}_{n-2} = \overline{0}$.

So det B = 2 and thus det A = 4.

Problem 5. For each positive integer k, find the smallest number n_k for which there exist real $n_k \times n_k$ matrices A_1, A_2, \ldots, A_k such that all of the following conditions hold:

- (1) $A_1^2 = A_2^2 = \ldots = A_k^2 = 0$,
- (2) $A_i A_j = A_j A_i$ for all $1 \le i, j \le k$, and
- (3) $A_1 A_2 \ldots A_k \neq 0.$

Solution. The anwser is $n_k = 2^k$. In that case, the matrices can be constructed as follows: Let V be the *n*-dimensional real vector space with basis elements [S], where S runs through all $n = 2^k$ subsets of $\{1, 2, \ldots, k\}$. Define A_i as an endomorphism of V by

$$A_i[S] = \begin{cases} 0 & \text{if } i \in S\\ [S \cup \{i\}] & \text{if } i \notin S \end{cases}$$

for all $i = 1, 2, \ldots, k$ and $S \subset \{1, 2, \ldots, k\}$. Then $A_i^2 = 0$ and $A_i A_j = A_j A_i$. Furthermore,

$$A_1 A_2 \dots A_k[\emptyset] = [\{1, 2, \dots, k\}],$$

and hence $A_1 A_2 \ldots A_k \neq 0$.

Now let A_1, A_2, \ldots, A_k be $n \times n$ matrices satisfying the conditions of the problem; we prove that $n \geq 2^k$. Let v be a real vector satisfying $A_1A_2 \ldots A_k v \neq 0$. Denote by \mathcal{P} the set of all subsets of $\{1, 2, \ldots, k\}$. Choose a complete ordering \prec on \mathcal{P} with the property

$$X \prec Y \quad \Rightarrow \quad |X| \le |Y| \quad \text{for all } X, Y \in \mathcal{P}.$$

For every element $X = \{x_1, x_2, \ldots, x_r\} \in \mathcal{P}$, define $A_X = A_{x_1}A_{x_2} \ldots A_{x_r}$ and $v_X = A_X v$. Finally, write $X = \{1, 2, ..., k\} \setminus X$ for the complement of X.

Now take $X, Y \in \mathcal{P}$ with $X \not\supseteq Y$. Then $A_{\bar{X}}$ annihilates v_Y , because $X \not\supseteq Y$ implies the existence of some $y \in Y \setminus X = Y \cap \overline{X}$, and

$$A_{\bar{X}}v_Y = A_{\bar{X}\setminus\{y\}}A_yA_yv_{Y\setminus\{y\}} = 0,$$

since $A_y^2 = 0$. So, $A_{\bar{X}}$ annihilates the span of all the v_Y with $X \not\supseteq Y$. This implies that v_X does not lie in this span, because $A_{\bar{X}}v_X = v_{\{1,2,\dots,k\}} \neq 0$. Therefore, the vectors v_X (with $X \in \mathcal{P}$) are linearly independent; hence $n \geq |\mathcal{P}| = 2^k$.

Problem 6. Let $f \neq 0$ be a polynomial with real coefficients. Define the sequence f_0, f_1, f_2, \ldots of polynomials by $f_0 = f$ and $f_{n+1} = f_n + f'_n$ for every $n \ge 0$. Prove that there exists a number N such that for every $n \ge N$, all roots of f_n are real.

Solution. For the proof, we need the following

Lemma 1. For any polynomial g, denote by d(g) the minimum distance of any two of its real zeros $(d(q) = \infty$ if q has at most one real zero). Assume that q and q + q' both are of degree $k \ge 2$ and have k distinct real zeros. Then $d(g+g') \ge d(g)$.

Proof of Lemma 1: Let $x_1 < x_2 < \cdots < x_k$ be the roots of g. Suppose a, b are roots of g + g'satisfying 0 < b - a < d(q). Then, a, b cannot be roots of q, and

$$\frac{g'(a)}{g(a)} = \frac{g'(b)}{g(b)} = -1.$$
(1)

Since $\frac{g'}{g}$ is strictly decreasing between consecutive zeros of g, we must have $a < x_j < b$ for some j. For all i = 1, 2, ..., k - 1 we have $x_{i+1} - x_i > b - a$, hence $a - x_i > b - x_{i+1}$. If i < j, both sides of this inequality are negative; if $i \ge j$, both sides are positive. In any case, $\frac{1}{a-x_i} < \frac{1}{b-x_{i+1}}$, and hence

$$\frac{g'(a)}{g(a)} = \sum_{i=1}^{k-1} \frac{1}{a-x_i} + \underbrace{\frac{1}{a-x_k}}_{<0} < \sum_{i=1}^{k-1} \frac{1}{b-x_{i+1}} + \underbrace{\frac{1}{b-x_1}}_{>0} = \frac{g'(b)}{g(b)}$$

This contradicts (1).

Now we turn to the proof of the stated problem. Denote by m the degree of f. We will prove by induction on m that f_n has m distinct real zeros for sufficiently large n. The cases m = 0, 1 are trivial; so we assume $m \ge 2$. Without loss of generality we can assume that f is monic. By induction, the result holds for f', and by ignoring the first few terms we can assume that f'_n has m-1 distinct real zeros for all n. Let us denote these zeros by $x_1^{(n)} > x_2^{(n)} > \cdots > x_{m-1}^{(n)}$. Then f_n has minima in $x_1^{(n)}, x_3^{(n)}, x_5^{(n)}, \ldots$, and maxima in $x_2^{(n)}, x_4^{(n)}, x_6^{(n)}, \ldots$. Note that in the interval $(x_{i+1}^{(n)}, x_i^{(n)})$, the function $f'_{n+1} = f'_n + f''_n$ must have a zero (this follows by applying Rolle's theorem to the function $e^{x}f'_{n}(x)$; the same is true for the interval $(-\infty, x_{m-1}^{(n)})$. Hence, in each of these m-1 intervals, f'_{n+1} has *exactly* one zero. This shows that

$$x_1^{(n)} > x_1^{(n+1)} > x_2^{(n)} > x_2^{(n+1)} > x_3^{(n)} > x_3^{(n+1)} > \dots$$
 (2)

Lemma 2. We have $\lim_{n\to\infty} f_n(x_j^{(n)}) = -\infty$ if j is odd, and $\lim_{n\to\infty} f_n(x_j^{(n)}) = +\infty$ if j is even.

Lemma 2 immediately implies the result: For sufficiently large n, the values of all maxima of f_n are positive, and the values of all minima of f_n are negative; this implies that f_n has m distinct zeros.

Proof of Lemma 2: Let $d = \min\{d(f'), 1\}$; then by Lemma 1, $d(f'_n) \ge d$ for all n. Define $\varepsilon = \frac{(m-1)d^{m-1}}{m^{m-1}}$; we will show that

$$f_{n+1}(x_j^{(n+1)}) \ge f_n(x_j^{(n)}) + \varepsilon \quad \text{for } j \text{ even.}$$
(3)

(The corresponding result for odd j can be shown similarly.) Do to so, write $f = f_n$, $b = x_j^{(n)}$, and choose a satisfying $d \leq b - a \leq 1$ such that f' has no zero inside (a, b). Define ξ by the relation $b-\xi = \frac{1}{m}(b-a)$; then $\xi \in (a,b)$. We show that $f(\xi) + f'(\xi) \ge f(b) + \varepsilon$. Notice, that

$$\frac{f''(\xi)}{f'(\xi)} = \sum_{i=1}^{m-1} \frac{1}{\xi - x_i^{(n)}}$$
$$= \sum_{i < j} \frac{1}{\underbrace{\xi - x_i^{(n)}}_{<\frac{1}{\xi - a}}} + \frac{1}{\xi - b} + \sum_{i > j} \frac{1}{\underbrace{\xi - x_i^{(n)}}_{<0}}$$
$$< (m-1)\frac{1}{\xi - a} + \frac{1}{\xi - b} = 0.$$

The last equality holds by definition of ξ . Since f' is positive and $\frac{f''}{f'}$ is decreasing in (a, b), we have that f'' is negative on (ξ, b) . Therefore,

$$f(b) - f(\xi) = \int_{\xi}^{b} f'(t)dt \le \int_{\xi}^{b} f'(\xi)dt = (b - \xi)f'(\xi)$$

Hence,

$$f(\xi) + f'(\xi) \ge f(b) - (b - \xi)f'(\xi) + f'(\xi)$$

= $f(b) + (1 - (\xi - b))f'(\xi)$
= $f(b) + (1 - \frac{1}{m}(b - a))f'(\xi)$
 $\ge f(b) + (1 - \frac{1}{m})f'(\xi).$

Together with

$$f'(\xi) = |f'(\xi)| = m \prod_{i=1}^{m-1} \underbrace{|\xi - x_i^{(n)}|}_{\ge |\xi - b|} \ge m |\xi - b|^{m-1} \ge \frac{d^{m-1}}{m^{m-2}}$$

we get

$$f(\xi) + f'(\xi) \ge f(b) + \varepsilon.$$

Together with (2) this shows (3). This finishes the proof of Lemma 2.

