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First day

PROBLEMS AND SOLUTIONS

Problem 1. (20 points) Let V be a 10-dimensional real vector space and U1 and U2 two linear subspaces
such that U1 ⊆ U2, dimIRU1 = 3 and dimIRU2 = 6. Let E be the set of all linear maps T : V −→ V which
have U1 and U2 as invariant subspaces (i.e., T (U1) ⊆ U1 and T (U2) ⊆ U2). Calculate the dimension of E
as a real vector space.

Solution First choose a basis {v1, v2, v3} of U1. It is possible to extend this basis with vectors v4,v5 and
v6 to get a basis of U2. In the same way we can extend a basis of U2 with vectors v7, . . . , v10 to get as
basis of V .

Let T ∈ E be an endomorphism which has U1 and U2 as invariant subspaces. Then its matrix, relative
to the basis {v1, . . . , v10} is of the form
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
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.

So dimIRE = 9 + 18 + 40 = 67.

Problem 2. Prove that the following proposition holds for n = 3 (5 points) and n = 5 (7 points), and
does not hold for n = 4 (8 points).

“For any permutation π1 of {1, 2, . . . , n} different from the identity there is a permutation π2 such
that any permutation π can be obtained from π1 and π2 using only compositions (for example, π =
π1 ◦ π1 ◦ π2 ◦ π1).”

Solution

Let Sn be the group of permutations of {1, 2, . . . , n}.
1) When n = 3 the proposition is obvious: if x = (12) we choose y = (123); if x = (123) we choose

y = (12).
2) n = 4. Let x = (12)(34). Assume that there exists y ∈ Sn, such that S4 = 〈x, y〉. Denote by K

the invariant subgroup
K = {id, (12)(34), (13)(24), (14)(23)}.

By the fact that x and y generate the whole group S4, it follows that the factor group S4/K contains
only powers of ȳ = yK, i.e., S4/K is cyclic. It is easy to see that this factor-group is not comutative
(something more this group is not isomorphic to S3).

3) n = 5
a) If x = (12), then for y we can take y = (12345).
b) If x = (123), we set y = (124)(35). Then y3xy3 = (125) and y4 = (124). Therefore (123), (124), (125) ∈

〈x, y〉- the subgroup generated by x and y. From the fact that (123), (124), (125) generate the alternating
subgroup A5, it follows that A5 ⊂ 〈x, y〉. Moreover y is an odd permutation, hence 〈x, y〉 = S5.

c) If x = (123)(45), then as in b) we see that for y we can take the element (124).
d) If x = (1234), we set y = (12345). Then (yx)3 = (24) ∈ 〈x, y〉, x2(24) = (13) ∈ 〈x, y〉 and

y2 = (13524) ∈ 〈x, y〉. By the fact (13) ∈ 〈x, y〉 and (13524) ∈ 〈x, y〉, it follows that 〈x, y〉 = S5.

1



e) If x = (12)(34), then for y we can take y = (1354). Then y2x = (125), y3x = (124)(53) and by c)
S5 = 〈x, y〉.

f) If x = (12345), then it is clear that for y we can take the element y = (12).

Problem 3. Let f(x) = 2x(1− x), x ∈ IR. Define

fn =

n
︷ ︸︸ ︷

f◦ . . . ◦f .

a) (10 points) Find limn→∞

∫ 1

0
fn(x)dx.

b) (10 points) Compute
∫ 1

0
fn(x)dx for n = 1, 2, . . ..

Solution. a) Fix x = x0 ∈ (0, 1). If we denote xn = fn(x0), n = 1, 2, . . . it is easy to see that
x1 ∈ (0, 1/2], x1 ≤ f(x1) ≤ 1/2 and xn ≤ f(xn) ≤ 1/2 (by induction). Then (xn)n is a bounded non-
decreasing sequence and, since xn+1 = 2xn(1−xn), the limit l = limn→∞ xn satisfies l = 2l(1− l), which
implies l = 1/2. Now the monotone convergence theorem implies that

lim
n→∞

∫ 1

0

fn(x)dx = 1/2.

b) We prove by induction that

(1) fn(x) =
1

2
− 22

n−1

(

x− 1

2

)2
n

holds for n = 1, 2, . . . . For n = 1 this is true, since f(x) = 2x(1 − x) = 1

2
− 2(x − 1

2
)2. If (1) holds for

some n = k, then we have

fk+1(x) = fk (f(x)) = 1

2
− 22

k−1
((

1

2
− 2(x− 1

2
)2

)
− 1

2

)2
k

= 1

2
− 22

k−1
(
−2(x− 1

2
)2

)2
k

= 1

2
− 22

k+1−1(x− 1

2
)2

k+1

which is (2) for n = k + 1.
Using (1) we can compute the integral,

∫ 1

0

fn(x)dx =

[

1

2
x− 22

n−1

2n + 1

(

x− 1

2

)2
n
+1

]1

x=0

=
1

2
− 1

2(2n + 1)
.

Problem 4. (20 points) The function f : IR → IR is twice differentiable and satisfies f(0) = 2, f ′(0) = −2
and f(1) = 1. Prove that there exists a real number ξ ∈ (0, 1) for which

f(ξ) · f ′(ξ) + f ′′(ξ) = 0.

Solution. Define the function

g(x) =
1

2
f2(x) + f ′(x).

Because g(0) = 0 and
f(x) · f ′(x) + f ′′(x) = g′(x),

it is enough to prove that there exists a real number 0 < η ≤ 1 for which g(η) = 0.
a) If f is never zero, let

h(x) =
x

2
− 1

f(x)
.
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Because h(0) = h(1) = − 1

2
, there exists a real number 0 < η < 1 for which h′(η) = 0. But g = f2 · h′,

and we are done.
b) If f has at least one zero, let z1 be the first one and z2 be the last one. (The set of the zeros is

closed.) By the conditions, 0 < z1 ≤ z2 < 1.
The function f is positive on the intervals [0, z1) and (z2, 1]; this implies that f ′(z1) ≤ 0 and f ′(z2) ≥ 0.
Then g(z1) = f ′(z1) ≤ 0 and g(z2) = f ′(z2) ≥ 0, and there exists a real number η ∈ [z1, z2] for which

g(η) = 0.
Remark. For the function f(x) = 2

x+1
the conditions hold and f · f ′ + f ′′ is constantly 0.

Problem 5. Let P be an algebraic polynomial of degree n having only real zeros and real coefficients.

a) (15 points) Prove that for every real x the following inequality holds:

(2) (n− 1)(P ′(x))2 ≥ nP (x)P ′′(x).

b) (5 points) Examine the cases of equality.

Solution. Observe that both sides of (2) are identically equal to zero if n = 1. Suppose that n > 1. Let
x1, . . . , xn be the zeros of P . Clearly (2) is true when x = xi, i ∈ {1, . . . , n}, and equality is possible
only if P ′(xi) = 0, i.e., if xi is a multiple zero of P . Now suppose that x is not a zero of P . Using the
identities

P ′(x)

P (x)
=

n∑

i=1

1

x− xi

,
P ′′(x)

P (x)
=

∑

1≤i<j≤n

2

(x− xi)(x− xj)
,

we find

(n− 1)

(
P ′(x)

P (x)

)2

− n
P ′′(x)

P (x)
=

n∑

i=1

n− 1

(x− xi)2
−

∑

1≤i<j≤n

2

(x − xi)(x− xj)
.

But this last expression is simply

∑

1≤i<j≤n

(
1

x− xi

− 1

x− xj

)2

,

and therefore is positive. The inequality is proved. In order that (2) holds with equality sign for every real
x it is necessary that x1 = x2 = . . . = xn. A direct verification shows that indeed, if P (x) = c(x− x1)

n,
then (2) becomes an identity.

Problem 6. Let f : [0, 1] → IR be a continuous function with the property that for any x and y in the
interval,

xf(y) + yf(x) ≤ 1.

a) (15 points) Show that
∫ 1

0

f(x)dx ≤ π

4
.

b) (5 points) Find a function, satisfying the condition, for which there is equality.

Solution Observe that the integral is equal to
∫ π

2

0

f(sin θ) cos θdθ

and to
∫ π

2

0

f(cos θ) sin θdθ

So, twice the integral is at most
∫ π

2

0

1dθ =
π

2
.

Now let f(x) =
√

1− x2. If x = sin θ and y = sin φ then

xf(y) + yf(x) = sin θ cosφ + sinφ cos θ = sin(θ + φ) ≤ 1.
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